-
1
-
-
0000392346
-
The complexity of finite functions
-
Jan Van Leeuwen, ed., Elsevier/MIT Press, Amsterdam/Cambridge
-
[1] R.B. Boppana and M. Sipser, The complexity of finite functions, in: Jan Van Leeuwen, ed., The Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity (Elsevier/MIT Press, Amsterdam/Cambridge, 1990).
-
(1990)
The Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity
-
-
Boppana, R.B.1
Sipser, M.2
-
2
-
-
44949274401
-
The undecidability of k-provability
-
[2] S. Buss, The undecidability of k-provability, Ann. Pure Appl. Logic 53 (1991) 72-102.
-
(1991)
Ann. Pure Appl. Logic
, vol.53
, pp. 72-102
-
-
Buss, S.1
-
3
-
-
0010906204
-
-
Ph.D. Dissertation, Graduate School, The City Univ. of New York, May
-
[3] A. Carbone, On logical flow graphs, Ph.D. Dissertation, Graduate School, The City Univ. of New York, May 1993.
-
(1993)
On Logical Flow Graphs
-
-
Carbone, A.1
-
4
-
-
0010772906
-
The craig interpolation theorem for schematic systems
-
Springer, Berlin
-
[4] A. Carbone, The Craig interpolation theorem for schematic systems, in: Collegium Logicum, Annals of the Kurt Gödel Society, Vol. 2 (Springer, Berlin, 1996).
-
(1996)
Collegium Logicum, Annals of the Kurt Gödel Society
, vol.2
-
-
Carbone, A.1
-
5
-
-
0001601465
-
The relative efficiency of propositional proof systems
-
[5] S.A. Cook and R. Reckhow, The relative efficiency of propositional proof systems, J. Symbolic Logic 44 (1979) 36-50.
-
(1979)
J. Symbolic Logic
, vol.44
, pp. 36-50
-
-
Cook, S.A.1
Reckhow, R.2
-
6
-
-
0000422940
-
A unification-theoretic method for investigating the k-provability problem
-
[6] W.M. Farmer, A unification-theoretic method for investigating the k-provability problem, Ann. Pure Appl. Logic 51 (1991) 173-214.
-
(1991)
Ann. Pure Appl. Logic
, vol.51
, pp. 173-214
-
-
Farmer, W.M.1
-
7
-
-
0003209117
-
Proof theory and logical complexity
-
Bibliopolis, Naples
-
[7] J.Y. Girard, Proof theory and logical complexity, in: Studies in Proof Theory, Monographs, Vol. 1 (Bibliopolis, Naples, 1987).
-
(1987)
Studies in Proof Theory, Monographs
, vol.1
-
-
Girard, J.Y.1
-
9
-
-
0010907144
-
-
Publication of IHES/M/90/54, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, June
-
[9] M. Gromov, Cell division and hyperbolic geometry, Publication of IHES/M/90/54, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, June 1990.
-
(1990)
Cell Division and Hyperbolic Geometry
-
-
Gromov, M.1
-
10
-
-
0010909672
-
-
Groningen, Walters-Noordhoff
-
[10] S.C. Kleene, Introduction to Metamathematics, Bibliotheca Mathematica, Monographs on Pure and Applied Mathematics, Vol. 1 (Groningen, Walters-Noordhoff, 1988).
-
(1988)
Introduction to Metamathematics, Bibliotheca Mathematica, Monographs on Pure and Applied Mathematics
, vol.1
-
-
Kleene, S.C.1
-
11
-
-
0003020124
-
The number of proof lines and the size of proofs in first order logic
-
[11] J. Krajíček and P. Pudlák, The number of proof lines and the size of proofs in first order logic, Arch. Math. Logic 27 (1988) 69-84.
-
(1988)
Arch. Math. Logic
, vol.27
, pp. 69-84
-
-
Krajíček, J.1
Pudlák, P.2
-
12
-
-
0010842067
-
Complexity of the realization of a linear function in the class of Π-circuits
-
[12] V.M. Krapchenko, Complexity of the realization of a linear function in the class of Π-circuits, Mat. Zamet. 9 (1971) 35-40. English translation in Math. Notes Acad. Sci. USSR 10 (1971) 21-23.
-
(1971)
Mat. Zamet.
, vol.9
, pp. 35-40
-
-
Krapchenko, V.M.1
-
13
-
-
0010774012
-
English translation in Math
-
[12] V.M. Krapchenko, Complexity of the realization of a linear function in the class of Π-circuits, Mat. Zamet. 9 (1971) 35-40. English translation in Math. Notes Acad. Sci. USSR 10 (1971) 21-23.
-
(1971)
Notes Acad. Sci. USSR
, vol.10
, pp. 21-23
-
-
-
14
-
-
0010839572
-
A method of obtaining lower bounds for the complexity of Π-schemes
-
[13] V.M. Krapchenko, A method of obtaining lower bounds for the complexity of Π-schemes, Mat. Zametki, 10 (1971) 83-92. English translation in Math. Notes Acad. Sci. USSR 11 (1972) 474-479.
-
(1971)
Mat. Zametki
, vol.10
, pp. 83-92
-
-
Krapchenko, V.M.1
-
15
-
-
0039467228
-
English translation in math
-
[13] V.M. Krapchenko, A method of obtaining lower bounds for the complexity of Π-schemes, Mat. Zametki, 10 (1971) 83-92. English translation in Math. Notes Acad. Sci. USSR 11 (1972) 474-479.
-
(1972)
Notes Acad. Sci. USSR
, vol.11
, pp. 474-479
-
-
-
17
-
-
0039863500
-
NP and Craig's interpolation theorem
-
G. Longo, G. Lolli and A. Marcja, eds. Elsevier, Amsterdam
-
[15] D. Mundici, NP and Craig's interpolation theorem. in: G. Longo, G. Lolli and A. Marcja, eds., Logic Colloquium '82 (Elsevier, Amsterdam, 1984).
-
(1984)
Logic Colloquium '82
-
-
Mundici, D.1
-
19
-
-
84968503966
-
Some results on the length of proofs
-
[17] R. Parikh, Some results on the length of proofs, Trans. Amer. Math. Soc. 177 (1973) 29-36.
-
(1973)
Trans. Amer. Math. Soc.
, vol.177
, pp. 29-36
-
-
Parikh, R.1
-
20
-
-
0002648050
-
The length of proofs
-
S. Buss, ed. North-Holland, Amsterdam
-
[18] P. Pudlák, The length of proofs, in: S. Buss, ed., Handbook of Proof Theory (North-Holland, Amsterdam, 1995).
-
(1995)
Handbook of Proof Theory
-
-
Pudlák, P.1
-
22
-
-
0010770923
-
Complexity of proofs in classical propositional logic
-
Y.N. Moschovakis, ed. Springer, Berlin
-
[20] A. Urquhart, Complexity of proofs in classical propositional logic, in: Y.N. Moschovakis, ed., Logic from Computer Science (Springer, Berlin, 1992) 597-608.
-
(1992)
Logic from Computer Science
, pp. 597-608
-
-
Urquhart, A.1
|