-
1
-
-
0010773094
-
-
Another elementary treatment of Girard's result connecting the slow and fast growing hierarchies of number-theoretic functions, manuscript
-
[1] P. Aczel, Another elementary treatment of Girard's result connecting the slow and fast growing hierarchies of number-theoretic functions, manuscript, 1980.
-
(1980)
-
-
Aczel, P.1
-
2
-
-
0010771148
-
A term rewriting characterization of polytime and related complexity classes
-
preprint, Münster to appear
-
[2] A. Beckmann and A. Weiermann, A term rewriting characterization of polytime and related complexity classes, preprint, Münster 1995. Arch. Math. Logic, to appear.
-
(1995)
Arch. Math. Logic
-
-
Beckmann, A.1
Weiermann, A.2
-
5
-
-
0002345190
-
Termination proofs and complexity characterisations
-
P. Aczel, H. Simmons, S. Wainer, eds. Cambridge Univ. Press, Cambridge
-
[5] E.A. Cichon, Termination proofs and complexity characterisations, in: P. Aczel, H. Simmons, S. Wainer, eds., Proof Theory (Cambridge Univ. Press, Cambridge, 1992) 173-193.
-
(1992)
Proof Theory
, pp. 173-193
-
-
Cichon, E.A.1
-
6
-
-
0000091452
-
The slow-growing and the Grzegorczyk hierarchies
-
[6] E.A. Cichon and S.S. Wainer, The slow-growing and the Grzegorczyk hierarchies, J. Symbolic Logic (48) (1983) 399-408.
-
(1983)
J. Symbolic Logic
, Issue.48
, pp. 399-408
-
-
Cichon, E.A.1
Wainer, S.S.2
-
9
-
-
0001840109
-
Logics for Termination and Correctness of Functional programs, II. Logics of strength PA
-
P. Aczel, H. Simmons, S. Wainer, eds. Cambridge Univ. Press, Cambridge
-
[9] S. Feferman, Logics for Termination and Correctness of Functional programs, II. Logics of strength PA, in: P. Aczel, H. Simmons, S. Wainer, eds., Proof Theory (Cambridge Univ. Press, Cambridge 1992) 197-225.
-
(1992)
Proof Theory
, pp. 197-225
-
-
Feferman, S.1
-
13
-
-
0002073775
-
Equational derivation vs. computation
-
[13] W.G. Handley and S.S. Wainer, Equational derivation vs. computation, Ann. Pure Appl. Logic 70 (1994) 17-49.
-
(1994)
Ann. Pure Appl. Logic
, vol.70
, pp. 17-49
-
-
Handley, W.G.1
Wainer, S.S.2
-
14
-
-
84974773048
-
Termination proofs by multiset path orderings imply primitive recursive derivation lengths
-
Springer, Berlin
-
[14] D. Hofbauer, Termination proofs by multiset path orderings imply primitive recursive derivation lengths, Proc. 2nd ALP, Lecture Notes in Computer Science, Vol. 463 (Springer, Berlin, 1990) 347-358.
-
(1990)
Proc. 2nd ALP, Lecture Notes in Computer Science
, vol.463
, pp. 347-358
-
-
Hofbauer, D.1
-
15
-
-
0004277778
-
-
Lecture Notes at the University of Munich
-
[15] H.R. Jervell, Homogeneous Trees, Lecture Notes at the University of Munich, 1979.
-
(1979)
Homogeneous Trees
-
-
Jervell, H.R.1
-
16
-
-
0010769843
-
-
A uniform approach to ≺ recursion, preprint, Münster, submitted
-
[16] M. Möllerfeld and A. Weiermann, A uniform approach to ≺ recursion, preprint, Münster (1995), submitted.
-
(1995)
-
-
Möllerfeld, M.1
Weiermann, A.2
-
17
-
-
77956955085
-
On a number-theoretic choice schema and its relation to induction
-
Myhill et al., eds North-Holland, Amsterdam
-
[17] C. Parsons, On a number-theoretic choice schema and its relation to induction. in: Myhill et al., eds., Intuitionism and Proof Theory (North-Holland, Amsterdam, 1970) 459-473.
-
(1970)
Intuitionism and Proof Theory
, pp. 459-473
-
-
Parsons, C.1
-
21
-
-
0010840128
-
Number theory and the Bachmann Howard ordinal
-
J. Stern, ed., North-Holland, Amsterdam
-
[21] U.R. Schmerl, Number theory and the Bachmann Howard ordinal, in: J. Stern, ed., Proc. Herbrand Symp. Logic Colloquium, Vol. 81. (North-Holland, Amsterdam, 1982).
-
(1982)
Proc. Herbrand Symp. Logic Colloquium
, vol.81
-
-
Schmerl, U.R.1
-
22
-
-
85037290111
-
Primitiv-rekursive ordinalzahlfunktionen, sitzungsberichte der bayerischen akademie der wissenschaften
-
[22] K. Schütte, Primitiv-rekursive Ordinalzahlfunktionen, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch Naturwissenschaftliche Klasse 1975 (1976) 143-153.
-
(1976)
Mathematisch Naturwissenschaftliche Klasse
, vol.1975
, pp. 143-153
-
-
Schütte, K.1
-
25
-
-
0000625573
-
Herbrand analyses
-
[25] W. Sieg, Herbrand analyses, Arch. Math. Logic 30 (1991) 409-441.
-
(1991)
Arch. Math. Logic
, vol.30
, pp. 409-441
-
-
Sieg, W.1
-
26
-
-
0000726546
-
The realm of primitive recursion
-
[26] H. Simmons, The realm of primitive recursion, Arch. Math. Logic 27 (1988).
-
(1988)
Arch. Math. Logic
, vol.27
-
-
Simmons, H.1
-
27
-
-
0000218845
-
Slow-growing vs. fast-growing
-
[27] S.S. Wainer, Slow-growing vs. fast-growing, J. Symbolic Logic 54 (1989) 608-614.
-
(1989)
J. Symbolic Logic
, vol.54
, pp. 608-614
-
-
Wainer, S.S.1
-
29
-
-
0010839569
-
Ein beitrag zur theorie der subrekursiven funktionen
-
Münster
-
[29] A. Weiermann, Ein Beitrag zur Theorie der subrekursiven Funktionen, Habilitationsschrift, Münster, 1994.
-
(1994)
Habilitationsschrift
-
-
Weiermann, A.1
-
30
-
-
21844525711
-
Investigations on slow versus fast growing, part I: How to majorize slow growing functions nontrivially by fast growing ones
-
[30] A. Weiermann, Investigations on slow versus fast growing, part I: How to majorize slow growing functions nontrivially by fast growing ones, Arch. for Math. Logic 34 (1995) 313-330.
-
(1995)
Arch. for Math. Logic
, vol.34
, pp. 313-330
-
-
Weiermann, A.1
-
31
-
-
0029637528
-
Termination proofs for term rewriting systems by lexicographic path orderings yield multiply recursive derivation lengths
-
[31] A. Weiermann, Termination proofs for term rewriting systems by lexicographic path orderings yield multiply recursive derivation lengths, Theoret. Comput. Sci. 139 (1995) 355-362.
-
(1995)
Theoret. Comput. Sci.
, vol.139
, pp. 355-362
-
-
Weiermann, A.1
-
32
-
-
85033871848
-
Rewriting theory for the Hydra battle and the extended Grzegorczyk hierarchy
-
to appear
-
[32] A. Weiermann, Rewriting theory for the Hydra battle and the extended Grzegorczyk hierarchy, J. Symbolic Logic, to appear.
-
J. Symbolic Logic
-
-
Weiermann, A.1
-
33
-
-
0010776788
-
A strongly uniform termination proof by methods from local predicativity
-
to appear
-
[33] A. Weiermann, A strongly uniform termination proof by methods from local predicativity, Archive for Mathematical Logic, to appear.
-
Archive for Mathematical Logic
-
-
Weiermann, A.1
|