-
1
-
-
0001143954
-
2u+λu = 0 allows the complete separation of variables
-
in Russian
-
2u+λu = 0 allows the complete separation of variables Math. Sb. 27 379-426 (in Russian)
-
(1950)
Math. Sb.
, vol.27
, pp. 379-426
-
-
Olevskiǐ, M.N.1
-
3
-
-
26744479510
-
Superintegrability in classical mechanics
-
Evans N W 1990 Superintegrability in classical mechanics Phys. Rev. A 41 5666-76
-
(1990)
Phys. Rev. A
, vol.41
, pp. 5666-5676
-
-
Evans, N.W.1
-
4
-
-
50549193436
-
On higher symmetries in quantum mechanics
-
Friš J, Mandrosov V, Smorodinsky Ya A, Uhlir M and Winternitz P 1965 On higher symmetries in quantum mechanics Phys. Lett. 16 354-6 Friš J, Smorodinskiǐ Ya A, Uhlíǐ M and Winternitz P 1967 Symmetry groups in classical and quantum mechanics Sov. J. Nucl. Phys. 4 444-50
-
(1965)
Phys. Lett.
, vol.16
, pp. 354-356
-
-
Friš, J.1
Mandrosov, V.2
Smorodinsky, Ya.A.3
Uhlir, M.4
Winternitz, P.5
-
5
-
-
0001312314
-
Symmetry groups in classical and quantum mechanics
-
Friš J, Mandrosov V, Smorodinsky Ya A, Uhlir M and Winternitz P 1965 On higher symmetries in quantum mechanics Phys. Lett. 16 354-6 Friš J, Smorodinskiǐ Ya A, Uhlíǐ M and Winternitz P 1967 Symmetry groups in classical and quantum mechanics Sov. J. Nucl. Phys. 4 444-50
-
(1967)
Sov. J. Nucl. Phys.
, vol.4
, pp. 444-450
-
-
Friš, J.1
Smorodinskiǐ, Ya.A.2
Uhlíǐ, M.3
Winternitz, P.4
-
8
-
-
84990671377
-
Path integral discussion for Smorodinsky-Winternitz potentials: I. Two- and three-dimensional Euclidean space
-
Grosche C, Pogosyan G S and Sissakian A N 1995 Path integral discussion for Smorodinsky-Winternitz potentials: I. Two- and three-dimensional Euclidean space Fortschr. Phys. 43 453-521
-
(1995)
Fortschr. Phys.
, vol.43
, pp. 453-521
-
-
Grosche, C.1
Pogosyan, G.S.2
Sissakian, A.N.3
-
9
-
-
84990719402
-
Path integral discussion for Smorodinsky-Winternitz potentials: II. The two- and three-dimensional sphere
-
Grosche C, Pogosyan G S and Sissakian A N 1995 Path integral discussion for Smorodinsky-Winternitz potentials: II. The two- and three-dimensional sphere Fortschr. Phys. 43 523-63
-
(1995)
Fortschr. Phys.
, vol.43
, pp. 523-563
-
-
Grosche, C.1
Pogosyan, G.S.2
Sissakian, A.N.3
-
10
-
-
0030559484
-
Path integral discussion for Smorodinsky-Winternitz potentials: III. The two-dimensional hyperboloid
-
Grosche C, Pogosyan G S and Sissakian A N 1996 Path integral discussion for Smorodinsky-Winternitz potentials: III. The two-dimensional hyperboloid Phys. Part. Nucl. 27 244-78
-
(1996)
Phys. Part. Nucl.
, vol.27
, pp. 244-278
-
-
Grosche, C.1
Pogosyan, G.S.2
Sissakian, A.N.3
-
11
-
-
0041048967
-
Path integral discussion for Smorodinsky-Winternitz potentials: IV. The three-dimensional hyperboloid
-
130 pp (Phys. Part. Nucl. to appear)
-
Grosche C, Pogosyan G S and Sissakian A N 1995 Path integral discussion for Smorodinsky-Winternitz potentials: IV. The three-dimensional hyperboloid DESY Report 130 pp (Phys. Part. Nucl. to appear)
-
(1995)
DESY Report
-
-
Grosche, C.1
Pogosyan, G.S.2
Sissakian, A.N.3
-
12
-
-
36049057876
-
Group theory and the hydrogen atom (I)
-
Bander M and Itzykson C 1968 Group theory and the hydrogen atom (I) Rev. Mod. Phys. 38 330-45 Bander M and Itzykson C 1968 Group theory and the hydrogen atom (II) Rev. Mod. Phys. 38 346-58
-
(1968)
Rev. Mod. Phys.
, vol.38
, pp. 330-345
-
-
Bander, M.1
Itzykson, C.2
-
13
-
-
33744571860
-
Group theory and the hydrogen atom (II)
-
Bander M and Itzykson C 1968 Group theory and the hydrogen atom (I) Rev. Mod. Phys. 38 330-45 Bander M and Itzykson C 1968 Group theory and the hydrogen atom (II) Rev. Mod. Phys. 38 346-58
-
(1968)
Rev. Mod. Phys.
, vol.38
, pp. 346-358
-
-
Bander, M.1
Itzykson, C.2
-
14
-
-
4243470223
-
On the canonical equivalence of the Kepler problem in coordinate and momentum space
-
Lakshmann M and Hasegawa H 1984 On the canonical equivalence of the Kepler problem in coordinate and momentum space J. Phys. A: Math. Gen. 17 L889-93
-
(1984)
J. Phys. A: Math. Gen.
, vol.17
-
-
Lakshmann, M.1
Hasegawa, H.2
-
15
-
-
0000978994
-
Symmetry of the quadratic Zeemann effect for hydrogen
-
Herrick D R 1982 Symmetry of the quadratic Zeemann effect for hydrogen Phys. Rev. A 26 323-329
-
(1982)
Phys. Rev. A
, vol.26
, pp. 323-329
-
-
Herrick, D.R.1
-
16
-
-
0010536402
-
The hydrogen atom in a weak magnetic field
-
Solov'ev E A 1982 The hydrogen atom in a weak magnetic field Sov. Phys.-JETP 55 1017-22
-
(1982)
Sov. Phys.-JETP
, vol.55
, pp. 1017-1022
-
-
Solov'ev, E.A.1
-
17
-
-
0002262625
-
The stark effect for the hydrogen atom in a magnetic field
-
Brown P A and Solov'ev E A 1984 The stark effect for the hydrogen atom in a magnetic field Sov. Phys.-JETP 59 38-46
-
(1984)
Sov. Phys.-JETP
, vol.59
, pp. 38-46
-
-
Brown, P.A.1
Solov'ev, E.A.2
-
20
-
-
0040864469
-
Electronic wavefunctions in a space of constant curvature
-
Bessis G and Bessis N 1979 Electronic wavefunctions in a space of constant curvature J. Phys. A: Math. Gen. 12 1991-7
-
(1979)
J. Phys. A: Math. Gen.
, vol.12
, pp. 1991-1997
-
-
Bessis, G.1
Bessis, N.2
-
21
-
-
0039053513
-
Symmetry and separation of the Coulomb two-center problem in three-dimensional space with constant curvature
-
in Russian
-
Otchik V S 1991 Symmetry and separation of the Coulomb two-center problem in three-dimensional space with constant curvature Dokl. AN BSSR 35 420-4 (in Russian) Otchik V S 1994 On the two Coulomb centres problem in a spherical geometry Proc. Int. Workshop on Symmetry Methods in Physics in Memory of Professor Ya A Smorodinsky (Dubna, 1993) ed G S Pogosyan, A N Sissakian and S I Vinitsky (Dubna: JINR Publications) pp 384-8
-
(1991)
Dokl. AN BSSR
, vol.35
, pp. 420-424
-
-
Otchik, V.S.1
-
22
-
-
0002491155
-
On the two coulomb centres problem in a spherical geometry
-
ed G S Pogosyan, A N Sissakian and S I Vinitsky (Dubna: JINR Publications)
-
Otchik V S 1991 Symmetry and separation of the Coulomb two-center problem in three-dimensional space with constant curvature Dokl. AN BSSR 35 420-4 (in Russian) Otchik V S 1994 On the two Coulomb centres problem in a spherical geometry Proc. Int. Workshop on Symmetry Methods in Physics in Memory of Professor Ya A Smorodinsky (Dubna, 1993) ed G S Pogosyan, A N Sissakian and S I Vinitsky (Dubna: JINR Publications) pp 384-8
-
(1994)
Proc. Int. Workshop on Symmetry Methods in Physics in Memory of Professor Ya A Smorodinsky (Dubna, 1993)
, pp. 384-388
-
-
Otchik, V.S.1
-
23
-
-
84919913673
-
De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur
-
Neumann C 1859 De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur J. Reine Angew. Math. 56 46-63
-
(1859)
J. Reine Angew. Math.
, vol.56
, pp. 46-63
-
-
Neumann, C.1
-
24
-
-
0000712910
-
Separation of variables for the classical and Neumann model
-
Babelon O and Talon M 1992 Separation of variables for the classical and Neumann model Nucl. Phys. B 379 321-39
-
(1992)
Nucl. Phys. B
, vol.379
, pp. 321-339
-
-
Babelon, O.1
Talon, M.2
-
25
-
-
0039678398
-
Complete sets of observables on the sphere in four-dimensional Euclidean space
-
Lukàčs I 1977 Complete sets of observables on the sphere in four-dimensional Euclidean space Theor. Math. Phys. 31 457-61
-
(1977)
Theor. Math. Phys.
, vol.31
, pp. 457-461
-
-
Lukàčs, I.1
-
26
-
-
0012388289
-
A complete set of the quantum-mechanical observables on a two-dimensional sphere
-
Lukàčs I 1973 A complete set of the quantum-mechanical observables on a two-dimensional sphere Theor. Math. Phys. 14 271-81
-
(1973)
Theor. Math. Phys.
, vol.14
, pp. 271-281
-
-
Lukàčs, I.1
-
27
-
-
36849106706
-
A new basis for the representations of the rotation group. Lamé and Heun polynomials
-
Patera J and Winternitz P 1973 A new basis for the representations of the rotation group. Lamé and Heun polynomials J. Math. Phys. 14 1130-9
-
(1973)
J. Math. Phys.
, vol.14
, pp. 1130-1139
-
-
Patera, J.1
Winternitz, P.2
-
28
-
-
0040454927
-
Spheroidal wave functions for the hydrogen atom
-
Coulson A C and Joseph A 1967 Spheroidal wave functions for the hydrogen atom Proc. Phys. Soc. 90 887-93
-
(1967)
Proc. Phys. Soc.
, vol.90
, pp. 887-893
-
-
Coulson, A.C.1
Joseph, A.2
-
30
-
-
84987108781
-
On a generalized Kepler-Coulomb system: Interbasis expansions
-
Kibler M, Mardoyan L G and Pogosyan G S 1994 On a generalized Kepler-Coulomb system: interbasis expansions Int. J. Quantum Chem. 52 1301-16
-
(1994)
Int. J. Quantum Chem.
, vol.52
, pp. 1301-1316
-
-
Kibler, M.1
Mardoyan, L.G.2
Pogosyan, G.S.3
-
31
-
-
84967414829
-
Spheroidal basis of the four-dimensional isotropic oscillator
-
15pp, unpublished (in Russian)
-
Davtyan L S, Mardoyan L G, Pogosyan G S, Sissakian A N and Ter-Antonyan V M 1987 Spheroidal basis of the four-dimensional isotropic oscillator JINR Communications P2-87-453, 15pp, unpublished (in Russian)
-
(1987)
JINR Communications
-
-
Davtyan, L.S.1
Mardoyan, L.G.2
Pogosyan, G.S.3
Sissakian, A.N.4
Ter-Antonyan, V.M.5
-
34
-
-
84974505738
-
Some properties of Wigner coefficients and hyperspherical harmonics
-
Stone A P 1956 Some properties of Wigner coefficients and hyperspherical harmonics Proc. Camb. Phil. Soc. 52 424-30
-
(1956)
Proc. Camb. Phil. Soc.
, vol.52
, pp. 424-430
-
-
Stone, A.P.1
-
37
-
-
4244066868
-
Path integration over compact and noncompact rotation groups
-
Böhm B and Junker G 1987 Path integration over compact and noncompact rotation groups J. Math. Phys. 28 1978-94
-
(1987)
J. Math. Phys.
, vol.28
, pp. 1978-1994
-
-
Böhm, B.1
Junker, G.2
-
39
-
-
0037962457
-
Path integrals on curved manifolds
-
Grosche C and Steiner F 1987 Path integrals on curved manifolds Z. Phys. C 36 699-714
-
(1987)
Z. Phys. C
, vol.36
, pp. 699-714
-
-
Grosche, C.1
Steiner, F.2
-
40
-
-
0011081333
-
How to solve path integrals in quantum mechanics
-
Grosche C and Steiner F 1995 How to solve path integrals in quantum mechanics J. Math. Phys. 36 2354-85
-
(1995)
J. Math. Phys.
, vol.36
, pp. 2354-2385
-
-
Grosche, C.1
Steiner, F.2
-
46
-
-
0039678399
-
Summation over feynman histories in polar coordinates
-
Peak D and Inomata A 1969 Summation over Feynman histories in polar coordinates J. Math. Phys. 10 1422-28
-
(1969)
J. Math. Phys.
, vol.10
, pp. 1422-1428
-
-
Peak, D.1
Inomata, A.2
|