메뉴 건너뛰기




Volumn 183, Issue 1, 1997, Pages 85-117

On spectral asymptotics for domains with fractal boundaries

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0031541043     PISSN: 00103616     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF02509797     Document Type: Article
Times cited : (19)

References (20)
  • 1
    • 0002020217 scopus 로고
    • Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals
    • Providence, RI: Am. Math. Soc.
    • Berry, M.V.: Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals. In: "Geometry of the Laplace Operator," Proc. Symp. Pure Math., Vol. 36, Providence, RI: Am. Math. Soc., 1980, pp. 13-38
    • (1980) "Geometry of the Laplace Operator," Proc. Symp. Pure Math. , vol.36 , pp. 13-38
    • Berry, M.V.1
  • 2
    • 0001432945 scopus 로고
    • Can one hear the dimension of a fractal?
    • Brossard, J., Carmona, R.: Can one hear the dimension of a fractal? Commun. Math. Phys. 104, 103-122 (1986)
    • (1986) Commun. Math. Phys. , vol.104 , pp. 103-122
    • Brossard, J.1    Carmona, R.2
  • 3
    • 0011351398 scopus 로고
    • Tambour fractal: Example d'une formule asymptotique à deux termes pour la "foction de comptage."
    • Fleckinger, J., Vasil'ev, D.: Tambour fractal: Example d'une formule asymptotique à deux termes pour la "foction de comptage." C.R. Acad. Sci. Paris 311, Série 1, 867-872 (1990)
    • (1990) C.R. Acad. Sci. Paris 311, Série , vol.1 , pp. 867-872
    • Fleckinger, J.1    Vasil'ev, D.2
  • 4
    • 84968515677 scopus 로고
    • An example of a two-term asymptotics for the "counting function" of a fractal drum
    • Fleckinger, J., Vasiliev, D.: An example of a two-term asymptotics for the "counting function" of a fractal drum, Trans. Am. Math. Soc. 337, No 1, 99-117 (1993)
    • (1993) Trans. Am. Math. Soc. , vol.337 , Issue.1 , pp. 99-117
    • Fleckinger, J.1    Vasiliev, D.2
  • 5
    • 21844520218 scopus 로고
    • Fractal drums and the n-dimensional modified Weyl-Berry conjecture
    • Hua, C., Sleeman, B.D.: Fractal drums and the n-dimensional modified Weyl-Berry conjecture, Comm. Math. Phys. 168, 581-607 (1995)
    • (1995) Comm. Math. Phys. , vol.168 , pp. 581-607
    • Hua, C.1    Sleeman, B.D.2
  • 6
    • 0002677952 scopus 로고
    • Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps
    • Jaksič, V., Molčanov, S., Simon, B.: Eigenvalue asymptotics of the Neumann Laplacian of Regions and Manifolds with cusps. J. Funct. Anal. 106, No 1, 59-79 (1992)
    • (1992) J. Funct. Anal. , vol.106 , Issue.1 , pp. 59-79
    • Jaksič, V.1    Molčanov, S.2    Simon, B.3
  • 7
    • 0002661764 scopus 로고
    • Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary
    • Ivrii, V.Ja.: Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary. Funct. Anal. Appl. 14, 98-106 (1980)
    • (1980) Funct. Anal. Appl. , vol.14 , pp. 98-106
    • Ivrii, V.Ja.1
  • 8
    • 0011557773 scopus 로고
    • Precise spectral asymptotics for elliptic operators
    • Ivrii, V.Ja.: "Precise spectral asymptotics for elliptic operators." Lect. Notes in Math. 1100, 1984
    • (1984) Lect. Notes in Math. , pp. 1100
    • Ivrii, V.Ja.1
  • 10
    • 84966208492 scopus 로고
    • Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture
    • Lapidus, M.L.: Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans. Am. Math. Soc. 325, 465-529 (1991)
    • (1991) Trans. Am. Math. Soc. , vol.325 , pp. 465-529
    • Lapidus, M.L.1
  • 11
    • 77957083459 scopus 로고
    • Spectral and fractal geometry: From Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function
    • (Birmingham, 1990), New York: Academic Press
    • Lapidus, M.L.: Spectral and fractal geometry: From Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. In: "Differential Equations and Mathematical Physics," Proc. UAB Intern. Conf. (Birmingham, 1990), New York: Academic Press, 1992, pp. 151-182
    • (1992) "Differential Equations and Mathematical Physics," Proc. UAB Intern. Conf. , pp. 151-182
    • Lapidus, M.L.1
  • 12
    • 0010800448 scopus 로고
    • Tambour fractal: Vers une resolution de la conjecture de Weyl-Berry pour les valeurs propresdu laplacien
    • Lapidus, M.L., Fleckinger-Pellé, J.: Tambour fractal: vers une resolution de la conjecture de Weyl-Berry pour les valeurs propresdu laplacien, C.R. Acad. Sci. Paris Sér. 1 Math. 306, 171-175 (1988)
    • (1988) C.R. Acad. Sci. Paris Sér. 1 Math. , vol.306 , pp. 171-175
    • Lapidus, M.L.1    Fleckinger-Pellé, J.2
  • 14
    • 33747018374 scopus 로고    scopus 로고
    • Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals
    • Levitin, M., Vassiliev, D.: Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals, Proc. London Math. Soc. (3) 72, 188-214 (1996)
    • (1996) Proc. London Math. Soc. (3) , vol.72 , pp. 188-214
    • Levitin, M.1    Vassiliev, D.2
  • 16
    • 0002020225 scopus 로고
    • Weyl's conjecture for manifolds with concave boundary
    • Providence, RI: Am. Math. Soc.
    • Melrose, R.B.: Weyl's conjecture for manifolds with concave boundary. In: "Geometry of the Laplace Operator," Proc. Symp. Pure Math. 36 (1980), Providence, RI: Am. Math. Soc., pp. 254-274
    • (1980) "Geometry of the Laplace Operator," Proc. Symp. Pure Math. , vol.36 , pp. 254-274
    • Melrose, R.B.1
  • 17
    • 84972530647 scopus 로고
    • Curvature and the eigenvalues of the Laplacian
    • McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1, 43-69 (1967)
    • (1967) J. Differ. Geom. , vol.1 , pp. 43-69
    • McKean, H.P.1    Singer, I.M.2
  • 18
    • 84936206066 scopus 로고
    • Diffusion processes and Riemann geometry
    • Molchanov, S.: Diffusion processes and Riemann geometry. Russ. Math. Surv. 30, No. 1, 3-60 (1975)
    • (1975) Russ. Math. Surv. , vol.30 , Issue.1 , pp. 3-60
    • Molchanov, S.1
  • 20
    • 84966201521 scopus 로고
    • The Newmann Laplacian of a jelly roll
    • Simon, B.: The Newmann Laplacian of a jelly roll. Proc. of the AMS 114, No. 3, 783-785 (1992)
    • (1992) Proc. of the AMS , vol.114 , Issue.3 , pp. 783-785
    • Simon, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.