-
1
-
-
0002020217
-
Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals
-
Providence, RI: Am. Math. Soc.
-
Berry, M.V.: Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals. In: "Geometry of the Laplace Operator," Proc. Symp. Pure Math., Vol. 36, Providence, RI: Am. Math. Soc., 1980, pp. 13-38
-
(1980)
"Geometry of the Laplace Operator," Proc. Symp. Pure Math.
, vol.36
, pp. 13-38
-
-
Berry, M.V.1
-
2
-
-
0001432945
-
Can one hear the dimension of a fractal?
-
Brossard, J., Carmona, R.: Can one hear the dimension of a fractal? Commun. Math. Phys. 104, 103-122 (1986)
-
(1986)
Commun. Math. Phys.
, vol.104
, pp. 103-122
-
-
Brossard, J.1
Carmona, R.2
-
3
-
-
0011351398
-
Tambour fractal: Example d'une formule asymptotique à deux termes pour la "foction de comptage."
-
Fleckinger, J., Vasil'ev, D.: Tambour fractal: Example d'une formule asymptotique à deux termes pour la "foction de comptage." C.R. Acad. Sci. Paris 311, Série 1, 867-872 (1990)
-
(1990)
C.R. Acad. Sci. Paris 311, Série
, vol.1
, pp. 867-872
-
-
Fleckinger, J.1
Vasil'ev, D.2
-
4
-
-
84968515677
-
An example of a two-term asymptotics for the "counting function" of a fractal drum
-
Fleckinger, J., Vasiliev, D.: An example of a two-term asymptotics for the "counting function" of a fractal drum, Trans. Am. Math. Soc. 337, No 1, 99-117 (1993)
-
(1993)
Trans. Am. Math. Soc.
, vol.337
, Issue.1
, pp. 99-117
-
-
Fleckinger, J.1
Vasiliev, D.2
-
5
-
-
21844520218
-
Fractal drums and the n-dimensional modified Weyl-Berry conjecture
-
Hua, C., Sleeman, B.D.: Fractal drums and the n-dimensional modified Weyl-Berry conjecture, Comm. Math. Phys. 168, 581-607 (1995)
-
(1995)
Comm. Math. Phys.
, vol.168
, pp. 581-607
-
-
Hua, C.1
Sleeman, B.D.2
-
6
-
-
0002677952
-
Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps
-
Jaksič, V., Molčanov, S., Simon, B.: Eigenvalue asymptotics of the Neumann Laplacian of Regions and Manifolds with cusps. J. Funct. Anal. 106, No 1, 59-79 (1992)
-
(1992)
J. Funct. Anal.
, vol.106
, Issue.1
, pp. 59-79
-
-
Jaksič, V.1
Molčanov, S.2
Simon, B.3
-
7
-
-
0002661764
-
Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary
-
Ivrii, V.Ja.: Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary. Funct. Anal. Appl. 14, 98-106 (1980)
-
(1980)
Funct. Anal. Appl.
, vol.14
, pp. 98-106
-
-
Ivrii, V.Ja.1
-
8
-
-
0011557773
-
Precise spectral asymptotics for elliptic operators
-
Ivrii, V.Ja.: "Precise spectral asymptotics for elliptic operators." Lect. Notes in Math. 1100, 1984
-
(1984)
Lect. Notes in Math.
, pp. 1100
-
-
Ivrii, V.Ja.1
-
10
-
-
84966208492
-
Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture
-
Lapidus, M.L.: Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans. Am. Math. Soc. 325, 465-529 (1991)
-
(1991)
Trans. Am. Math. Soc.
, vol.325
, pp. 465-529
-
-
Lapidus, M.L.1
-
11
-
-
77957083459
-
Spectral and fractal geometry: From Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function
-
(Birmingham, 1990), New York: Academic Press
-
Lapidus, M.L.: Spectral and fractal geometry: From Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. In: "Differential Equations and Mathematical Physics," Proc. UAB Intern. Conf. (Birmingham, 1990), New York: Academic Press, 1992, pp. 151-182
-
(1992)
"Differential Equations and Mathematical Physics," Proc. UAB Intern. Conf.
, pp. 151-182
-
-
Lapidus, M.L.1
-
12
-
-
0010800448
-
Tambour fractal: Vers une resolution de la conjecture de Weyl-Berry pour les valeurs propresdu laplacien
-
Lapidus, M.L., Fleckinger-Pellé, J.: Tambour fractal: vers une resolution de la conjecture de Weyl-Berry pour les valeurs propresdu laplacien, C.R. Acad. Sci. Paris Sér. 1 Math. 306, 171-175 (1988)
-
(1988)
C.R. Acad. Sci. Paris Sér. 1 Math.
, vol.306
, pp. 171-175
-
-
Lapidus, M.L.1
Fleckinger-Pellé, J.2
-
14
-
-
33747018374
-
Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals
-
Levitin, M., Vassiliev, D.: Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals, Proc. London Math. Soc. (3) 72, 188-214 (1996)
-
(1996)
Proc. London Math. Soc. (3)
, vol.72
, pp. 188-214
-
-
Levitin, M.1
Vassiliev, D.2
-
16
-
-
0002020225
-
Weyl's conjecture for manifolds with concave boundary
-
Providence, RI: Am. Math. Soc.
-
Melrose, R.B.: Weyl's conjecture for manifolds with concave boundary. In: "Geometry of the Laplace Operator," Proc. Symp. Pure Math. 36 (1980), Providence, RI: Am. Math. Soc., pp. 254-274
-
(1980)
"Geometry of the Laplace Operator," Proc. Symp. Pure Math.
, vol.36
, pp. 254-274
-
-
Melrose, R.B.1
-
17
-
-
84972530647
-
Curvature and the eigenvalues of the Laplacian
-
McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1, 43-69 (1967)
-
(1967)
J. Differ. Geom.
, vol.1
, pp. 43-69
-
-
McKean, H.P.1
Singer, I.M.2
-
18
-
-
84936206066
-
Diffusion processes and Riemann geometry
-
Molchanov, S.: Diffusion processes and Riemann geometry. Russ. Math. Surv. 30, No. 1, 3-60 (1975)
-
(1975)
Russ. Math. Surv.
, vol.30
, Issue.1
, pp. 3-60
-
-
Molchanov, S.1
-
20
-
-
84966201521
-
The Newmann Laplacian of a jelly roll
-
Simon, B.: The Newmann Laplacian of a jelly roll. Proc. of the AMS 114, No. 3, 783-785 (1992)
-
(1992)
Proc. of the AMS
, vol.114
, Issue.3
, pp. 783-785
-
-
Simon, B.1
|