-
1
-
-
85033116337
-
-
note
-
It is assumed that the cable cannot be stretched and offers no resistance to bending.
-
-
-
-
2
-
-
0004080270
-
-
translated, with Introduction and Notes, by S. Drake (The University of Wisconsin Press, Madison)
-
Galileo Galilei, Two New Sciences, Including Centers of Gravity and Forces of Percussion, translated, with Introduction and Notes, by S. Drake (The University of Wisconsin Press, Madison, 1974), p. 143.
-
(1974)
Two New Sciences, Including Centers of Gravity and Forces of Percussion
, pp. 143
-
-
Galilei, G.1
-
3
-
-
21844506106
-
Remarkable shapes of a catenary under the effect of gravity and surface tension
-
For a more detailed history, see F. Behroozi, P. Mohazzabi, and J. P. McCrickard, "Remarkable shapes of a catenary under the effect of gravity and surface tension," Am. J. Phys. 62, 1121-1128 (1994).
-
(1994)
Am. J. Phys.
, vol.62
, pp. 1121-1128
-
-
Behroozi, F.1
Mohazzabi, P.2
McCrickard, J.P.3
-
6
-
-
85033112110
-
-
Birkhäuser, Basel
-
D. Speiser, Die Streitschriften Von Jacob Und Johann Bernoulli: Variationsrechnung (Birkhäuser, Basel, 1991), p. 503. This reference contains a length introduction (in English) by H. Goldstine followed by reproductions of all the articles (in the original Latin) written by Jacob and Johann Bernoulli on the calculus of variations. Their mathematical notation is translated into modern parlance.
-
(1991)
Die Streitschriften Von Jacob Und Johann Bernoulli: Variationsrechnung
, pp. 503
-
-
Speiser, D.1
-
7
-
-
0039058974
-
A simple solution of the center loaded catenary
-
H. S. Zapolsky, "A simple solution of the center loaded catenary," Am. J. Phys. 58, 1110-1112 (1990).
-
(1990)
Am. J. Phys.
, vol.58
, pp. 1110-1112
-
-
Zapolsky, H.S.1
-
8
-
-
0003979651
-
-
Addison-Wesley, Menlo Park, CA
-
J. Mathews and R. L. Walker, Mathematical Methods in Physics (Addison-Wesley, Menlo Park, CA, 1970), p. 331.
-
(1970)
Mathematical Methods in Physics
, pp. 331
-
-
Mathews, J.1
Walker, R.L.2
-
9
-
-
85033107195
-
-
note
-
Reference 8, pp. 322-324.
-
-
-
-
10
-
-
85033103519
-
-
note
-
I thank Giulio Ruffini for helpful discussion on this subtle point.
-
-
-
-
11
-
-
85033116117
-
-
note
-
Reference 6, p. 63.
-
-
-
-
12
-
-
0004270415
-
-
Addison, Reading, MA
-
K. R. Symon, Mechanics (Addison, Reading, MA, 1971), p. 241.
-
(1971)
Mechanics
, pp. 241
-
-
Symon, K.R.1
-
13
-
-
0003851731
-
-
Dover, New York
-
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 3rd ed. (Dover, New York, 1970), p. 589.
-
(1970)
Handbook of Mathematical Functions, 3rd Ed.
, pp. 589
-
-
Abramowitz, M.1
Stegun, I.A.2
-
14
-
-
0003474751
-
-
Cambridge, U.P., Cambridge, U.K.
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge, U.P., Cambridge, U.K., 1992), p. 124. I thank Rodney Glenister for suggesting this approach.
-
(1992)
Numerical Recipes in FORTRAN
, pp. 124
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
15
-
-
85033110341
-
-
note
-
Reference 12, p. 257.
-
-
-
-
16
-
-
85033111419
-
-
note
-
Reference 12, pp. 239-240.
-
-
-
-
17
-
-
85033104074
-
-
note
-
I thank Michael Ashworth for showing me the theta function trick. The same reduction follows less elegantly from integrating by parts.
-
-
-
|