-
1
-
-
0001428463
-
Random walks, electrical resistance, and nested fractals
-
Montreal: Longman
-
[1] M. T. BARLOW, Random walks, electrical resistance, and nested fractals( Asymptotic Problems in Probability Theory: Stochastic models and diffusions on fractals, Montreal: Longman, 1993, pp. 131-157).
-
(1993)
Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals
, pp. 131-157
-
-
Barlow, M.T.1
-
2
-
-
0001035130
-
Construction of the Brownian motion on the Sierpinski carpet
-
[2] M. T. BARLOW and R. F. BASS, Construction of the Brownian motion on the Sierpinski carpet, (Ann. Inst. Henri Poincaré, Vol. 25, 1989, pp. 225-257).
-
(1989)
Ann. Inst. Henri Poincaré
, vol.25
, pp. 225-257
-
-
Barlow, M.T.1
Bass, R.F.2
-
3
-
-
0000835875
-
Brownian motion on the Sierpinski gasket
-
[3] M. T. BARLOW and E. A. PERKINS, Brownian motion on the Sierpinski gasket (Prob. Th. Rel. Fields, Vol. 79, 1988, pp. 543-623).
-
(1988)
Prob. Th. Rel. Fields
, vol.79
, pp. 543-623
-
-
Barlow, M.T.1
Perkins, E.A.2
-
4
-
-
0002936306
-
Asymptotic behaviour of non-linear contraction semigroups
-
[4] C. M. DAFERMOS and M. SLEMROD, Asymptotic behaviour of non-linear contraction semigroups (J. Functional Analysis, Vol. 13, 1973, pp. 97-106).
-
(1973)
J. Functional Analysis
, vol.13
, pp. 97-106
-
-
Dafermos, C.M.1
Slemrod, M.2
-
7
-
-
0003523792
-
Dirichlet forms and symetric Markov processes
-
Walter de Gruyter, Berlin, New-york
-
[7] M. FUKUSHIMA, Y. OSHIMA and M. TAKEDA, Dirichlet forms and symetric Markov processes (de Gruyter Stud. Math., Vol. 19, Walter de Gruyter, Berlin, New-york, 1994).
-
(1994)
De Gruyter Stud. Math.
, vol.19
-
-
Fukushima, M.1
Oshima, Y.2
Takeda, M.3
-
8
-
-
0000648822
-
Dirichlet forms, diffusion processes and spectral dimensions for nested fractals
-
Ideas and Methods in Mathematical analysis, Stochastics and Applications (S. Albevario et al., eds.), Cambridge Univ. Press, Cambridge
-
[8] M. FUKUSHIMA, Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, in: Ideas and Methods in Mathematical analysis, Stochastics and Applications (Proc. Conf. in Memory of Hoegh-Krohn, Vol. 1 (S. Albevario et al., eds.), Cambridge Univ. Press, Cambridge, 1993, pp. 151-161).
-
(1993)
Proc. Conf. in Memory of Hoegh-Krohn
, vol.1
, pp. 151-161
-
-
Fukushima, M.1
-
9
-
-
0001582569
-
Random walks and diffusions on fractals
-
(H. Kesten, ed.), Springer-Verlag, New York
-
[9] S. GOLDSTEIN, Random walks and diffusions on fractals, in: IMA Math Appl., Vol. 8 (H. Kesten, ed.), Springer-Verlag, New York, 1987, pp. 121-129).
-
(1987)
IMA Math Appl.
, vol.8
, pp. 121-129
-
-
Goldstein, S.1
-
10
-
-
0001698331
-
Gaussian field theories on general networks and the spectral dimensions
-
[10] K. HATTORI, T. HATTORI, H. WATANABE, Gaussian field theories on general networks and the spectral dimensions (Progress of Theoritical Physics, Supplement No 92, 1987).
-
(1987)
Progress of Theoritical Physics
, Issue.SUPPL. NO 92
-
-
Hattori, K.1
Hattori, T.2
Watanabe, H.3
-
11
-
-
0001265433
-
Fractals and self-similarity
-
[11] J. E. HUTCHINSON, Fractals and self-similarity (Indiana Univ. Math. J., Vol. 30, 1981, pp. 713-747).
-
(1981)
Indiana Univ. Math. J.
, vol.30
, pp. 713-747
-
-
Hutchinson, J.E.1
-
12
-
-
84924341601
-
Harmonic calculus on p.c.f. self-similar sets
-
[12] J. KIGAMI, Harmonic calculus on p.c.f. self-similar sets, (Trans. Am. Math. Soc., Vol. 335, 1993, pp. 721-755) .
-
(1993)
Trans. Am. Math. Soc.
, vol.335
, pp. 721-755
-
-
Kigami, J.1
-
13
-
-
0002343091
-
Harmonic calculus on limits of networks and its application to dendrites
-
February 15
-
[13] J. KIGAMI, Harmonic calculus on limits of networks and its application to dendrites (Journal of Functional Analysis, Vol. 128, No. 1, February 15, 1995).
-
(1995)
Journal of Functional Analysis
, vol.128
, Issue.1
-
-
Kigami, J.1
-
14
-
-
0000430442
-
Regularity, closedness, and spectral dimension of the Dirichlet forms on p.c.f. self-similar sets
-
[14] T. KUMAGAI , Regularity, closedness, and spectral dimension of the Dirichlet forms on p.c.f. self-similar sets (J. Math. Kyoto Univ., Vol. 33, 1993, pp. 765-786).
-
(1993)
J. Math. Kyoto Univ.
, vol.33
, pp. 765-786
-
-
Kumagai, T.1
-
15
-
-
0002070668
-
A diffusion process on a fractal
-
Probabilistic Methods in Mathematical Physics (K. Ito and N. Ikeda, eds.) Kinokuniya, Tokyo
-
[15] S. KUSUOKA, A diffusion process on a fractal, in: (Probabilistic Methods in Mathematical Physics (Proc. of Taniguchi Intern. Symp. (K. Ito and N. Ikeda, eds.) Kinokuniya, Tokyo, 1987, pp. 251-274).
-
(1987)
Proc. of Taniguchi Intern. Symp.
, pp. 251-274
-
-
Kusuoka, S.1
-
17
-
-
0001313307
-
Analysis on fractals, Laplacians on self-similar sets, non-commutative geometry and spectral dimensions
-
[17] M. L. LAPIDUS, Analysis on fractals, Laplacians on self-similar sets, non-commutative geometry and spectral dimensions (Topological Methods in Nonlinear Analysis, Vol. 4, No 1, 1994 i, pp. 137-195).
-
(1994)
Topological Methods in Nonlinear Analysis
, vol.4
, Issue.1
, pp. 137-195
-
-
Lapidus, M.L.1
-
18
-
-
0003126003
-
Mesures associées à une forme de Dirichlet. Applications
-
[18] Y. LE JAN, Mesures associées à une forme de Dirichlet. Applications (Bull. Soc. Math. de France, Vol. 106, 1978, pp. 61-112).
-
(1978)
Bull. Soc. Math. de France
, vol.106
, pp. 61-112
-
-
Le Jan, Y.1
-
19
-
-
0000311503
-
Brownian motion on nested fractals
-
[19] T. LINDSTRØM, , Brownian motion on nested fractals (Mem. Amer. Math. Soc., Vol. 420, 1990).
-
(1990)
Mem. Amer. Math. Soc.
, vol.420
-
-
LindstrØm, T.1
-
20
-
-
0000921622
-
How many diffusions exist on the Viscek snowflake
-
[20] V. METZ, How many diffusions exist on the Viscek snowflake (Acta Applicandae Mathematicae, Vol. 32, 1993, pp. 227-241) .
-
(1993)
Acta Applicandae Mathematicae
, vol.32
, pp. 227-241
-
-
Metz, V.1
-
21
-
-
0010780407
-
Hilbert's projective metric on cones of Dirichlet forms
-
[21] V. METZ, Hilbert's Projective metric on cones of Dirichlet forms (Journal of Functional Analysis, Vol 127, No 2, 1995).
-
(1995)
Journal of Functional Analysis
, vol.127
, Issue.2
-
-
Metz, V.1
-
22
-
-
0039771567
-
Additive functions of intervals and Haussdorf measure
-
[22] MORAN, Additive functions of intervals and Haussdorf measure (Math. Proc., Cambridge Philos. Soc., Vol. 42, 1946, pp. 15-23).
-
(1946)
Math. Proc., Cambridge Philos. Soc.
, vol.42
, pp. 15-23
-
-
Moran1
-
23
-
-
0001338184
-
Hilbert's protective metric and iterated nonlinear maps
-
Amer. Math. Soc. Providence
-
[23] R.D. NUSSBAUM, Hilbert's Protective Metric and Iterated Nonlinear Maps (Mem. Am. Math. Soc., Vol 75, No 391, Amer. Math. Soc. Providence, 1988).
-
(1988)
Mem. Am. Math. Soc.
, vol.75
, Issue.391
-
-
Nussbaum, R.D.1
-
24
-
-
0010851125
-
The structure of w-limit sets of non-expansive maps
-
[24] S. ROEHRIG and R. SINE, The structure of w-limit sets of non-expansive maps (Proc. Amer. Math. Soc., Vol. 81, 1981, pp. 398-400).
-
(1981)
Proc. Amer. Math. Soc.
, vol.81
, pp. 398-400
-
-
Roehrig, S.1
Sine, R.2
-
26
-
-
0001181146
-
Existence et unicité de la diffusion sur un espace fractal
-
[26] C. SABOT, Existence et unicité de la diffusion sur un espace fractal (C. R. Acad. Sci. Paris, T. 321, Séries I, pp. 1053-1059, 1995).
-
(1995)
C. R. Acad. Sci. Paris
, vol.321
, Issue.I
, pp. 1053-1059
-
-
Sabot, C.1
-
28
-
-
0000245433
-
Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée
-
[28] W. SIERPINSKI , Sur une courbe Cantorienne qui contient une image biunivoque et continue de toute courbe donnée (C. R. Acad. Sci. Paris, T. 162, 1916, pp. 629-632).
-
(1916)
C. R. Acad. Sci. Paris
, vol.162
, pp. 629-632
-
-
Sierpinski, W.1
|