메뉴 건너뛰기




Volumn 25, Issue 1, 1997, Pages 56-70

Invariant measures of critical spatial branching processes in high dimensions

Author keywords

Critical branching Brownian motion; Critical Dawson Watanabe process; Invariant measures

Indexed keywords


EID: 0031511640     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1024404278     Document Type: Article
Times cited : (12)

References (21)
  • 1
    • 0002014946 scopus 로고
    • Translation invariance and instability of phase coexistence in the two-dimensional Ising system
    • AIZENMAN, M. (1980). Translation invariance and instability of phase coexistence in the two-dimensional Ising system. Comm. Math. Phys. 73 83-94.
    • (1980) Comm. Math. Phys. , vol.73 , pp. 83-94
    • Aizenman, M.1
  • 2
    • 0000760551 scopus 로고
    • Ergodicity of critical spatial branching processes in low dimensions
    • BRAMSON, M., Cox, J. T. and GREVEN, A. (1993). Ergodicity of critical spatial branching processes in low dimensions. Ann. Probab. 21 1946-1957.
    • (1993) Ann. Probab. , vol.21 , pp. 1946-1957
    • Bramson, M.1    Cox, J.T.2    Greven, A.3
  • 3
    • 38149145275 scopus 로고
    • On the ergodic theory of critical branching Markov chains
    • Cox, J. T. (1994). On the ergodic theory of critical branching Markov chains. Stochastic Process. Appl. 50 1-20.
    • (1994) Stochastic Process. Appl. , vol.50 , pp. 1-20
    • Cox, J.T.1
  • 4
    • 0000636614 scopus 로고
    • The critical measure diffusion process
    • DAWSON, A. (1977). The critical measure diffusion process. Z. Wahrsch. Verw. Gebiete 40 125-145.
    • (1977) Z. Wahrsch. Verw. Gebiete , vol.40 , pp. 125-145
    • Dawson, A.1
  • 7
    • 0039949224 scopus 로고
    • An infinite particle system with additive interactions
    • DURRETT, R. (1979). An infinite particle system with additive interactions. Adv. in Appl. Probab. 11 355-383.
    • (1979) Adv. in Appl. Probab. , vol.11 , pp. 355-383
    • Durrett, R.1
  • 8
    • 0002516514 scopus 로고
    • Three classes of infinite dimensional diffusions
    • DYNKIN, E. B. (1989). Three classes of infinite dimensional diffusions. J. Funct. Anal. 86 75-110.
    • (1989) J. Funct. Anal. , vol.86 , pp. 75-110
    • Dynkin, E.B.1
  • 10
    • 84968513739 scopus 로고
    • Limiting distributions for branching random fields
    • FLEISCHMAN, J. (1978). Limiting distributions for branching random fields. Trans. Amer. Math. Soc. 239 353-389.
    • (1978) Trans. Amer. Math. Soc. , vol.239 , pp. 353-389
    • Fleischman, J.1
  • 11
    • 0007195745 scopus 로고
    • Long time behavior of critical branching particle systems and applications
    • GOROSTIZA, L. G. and WAKOLBINGER, A. (1994). Long time behavior of critical branching particle systems and applications. CRM Proceedings and Lecture Notes 5 119-138.
    • (1994) CRM Proceedings and Lecture Notes , vol.5 , pp. 119-138
    • Gorostiza, L.G.1    Wakolbinger, A.2
  • 12
    • 0002473053 scopus 로고
    • A weighted occupation time for a class of measure-valued branching processes
    • ISCOE, I. (1986). A weighted occupation time for a class of measure-valued branching processes. Probab. Theory Related Fields 71 85-116.
    • (1986) Probab. Theory Related Fields , vol.71 , pp. 85-116
    • Iscoe, I.1
  • 16
    • 0039586300 scopus 로고
    • Ergodic theorems for spatial processes
    • NGUYEN, X. X. and ZESSIN, H. (1979). Ergodic theorems for spatial processes. Z. Wahrsch. Verw. Gebeite 48 133-158.
    • (1979) Z. Wahrsch. Verw. Gebeite , vol.48 , pp. 133-158
    • Nguyen, X.X.1    Zessin, H.2
  • 17
    • 0009238421 scopus 로고
    • A space-time property of a class of measure-valued branching diffusions
    • PERKINS, E. A. (1988). A space-time property of a class of measure-valued branching diffusions. Trans. Amer. Math. Soc. 305 743-794.
    • (1988) Trans. Amer. Math. Soc. , vol.305 , pp. 743-794
    • Perkins, E.A.1
  • 19
    • 0002770407 scopus 로고
    • A criterion of convergence of measure-valued processes: Application to measure branching processes
    • ROELLY-COPPOLETTA, S. (1986). A criterion of convergence of measure-valued processes: application to measure branching processes. Stochastics 17 43-65.
    • (1986) Stochastics , vol.17 , pp. 43-65
    • Roelly-Coppoletta, S.1
  • 20
    • 84985349807 scopus 로고
    • A subcritical spatially homogeneous branching process may have an equilibrium
    • SIEGMUND-SCHULTZE. RA. (1991). A subcritical spatially homogeneous branching process may have an equilibrium. Math. Nachr. 151 101-120.
    • (1991) Math. Nachr. , vol.151 , pp. 101-120
    • Siegmund-Schultze, R.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.