-
1
-
-
84947414997
-
Cavity quantum electrodynamics
-
See, for example, S. Haroche and D. Kleppner, "Cavity quantum electrodynamics," Phys. Today 42(1), 24-30 (1989).
-
(1989)
Phys. Today
, vol.42
, Issue.1
, pp. 24-30
-
-
Haroche, S.1
Kleppner, D.2
-
3
-
-
84975606507
-
Waveguide mode enhancement of molecular fluorescence
-
W. R. Holland and D. G. Hall, "Waveguide mode enhancement of molecular fluorescence," Opt. Lett. 10, 414-416 (1985).
-
(1985)
Opt. Lett.
, vol.10
, pp. 414-416
-
-
Holland, W.R.1
Hall, D.G.2
-
4
-
-
84975595259
-
Interaction of metal particles with adsorbed dye molecules: Absorption and luminescence
-
A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, "Interaction of metal particles with adsorbed dye molecules: absorption and luminescence," Opt. Lett. 5, 368-370 (1980).
-
(1980)
Opt. Lett.
, vol.5
, pp. 368-370
-
-
Glass, A.M.1
Liao, P.F.2
Bergman, J.G.3
Olson, D.H.4
-
5
-
-
4243293970
-
Frequency shifts of an electric-dipole transition near a partially reflecting surface
-
R. R. Chance, A. Prock, and R. Silbey, "Frequency shifts of an electric-dipole transition near a partially reflecting surface," Phys. Rev. A 12, 1448-1452 (1975).
-
(1975)
Phys. Rev. A
, vol.12
, pp. 1448-1452
-
-
Chance, R.R.1
Prock, A.2
Silbey, R.3
-
6
-
-
0000899755
-
Frequency shifts of an electric-dipole resonance near a conducting surface
-
W. R. Holland and D. G. Hall, "Frequency shifts of an electric-dipole resonance near a conducting surface," Phys. Rev. Lett. 52, 1041-1044 (1984).
-
(1984)
Phys. Rev. Lett.
, vol.52
, pp. 1041-1044
-
-
Holland, W.R.1
Hall, D.G.2
-
7
-
-
84975602255
-
Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal
-
W. H. Weber and C. F. Eagen, "Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal," Opt. Lett. 4, 236-238 (1979).
-
(1979)
Opt. Lett.
, vol.4
, pp. 236-238
-
-
Weber, W.H.1
Eagen, C.F.2
-
8
-
-
0000703394
-
Nonradiative decay of excited molecules near a metal surface
-
I. Pockrand, A. Brillante, and D. Möbius, "Nonradiative decay of excited molecules near a metal surface," Chem. Phys. Lett. 69, 499-504 (1980).
-
(1980)
Chem. Phys. Lett.
, vol.69
, pp. 499-504
-
-
Pockrand, I.1
Brillante, A.2
Möbius, D.3
-
9
-
-
0031529929
-
Enhancement and inhibition of electromagnetic radiation in plane-layered media. I. Plane-wave-spectrum approach to modeling classical effects
-
K. G. Sullivan and D. G. Hall, "Enhancement and inhibition of electromagnetic radiation in plane-layered media. I. Plane-wave-spectrum approach to modeling classical effects," J. Opt. Soc. Am. B 14, 1150-1160 (1997).
-
(1997)
J. Opt. Soc. Am. B
, vol.14
, pp. 1150-1160
-
-
Sullivan, K.G.1
Hall, D.G.2
-
10
-
-
0028441121
-
Directional, enhanced fluorescence from molecules near a periodic surface
-
K. G. Sullivan, O. King, C. Sigg, and D. G. Hall, "Directional, enhanced fluorescence from molecules near a periodic surface," Appl. Opt. 33, 2447-2454 (1994).
-
(1994)
Appl. Opt.
, vol.33
, pp. 2447-2454
-
-
Sullivan, K.G.1
King, O.2
Sigg, C.3
Hall, D.G.4
-
11
-
-
0003363392
-
Theory of dielectric waveguides
-
T. Tamir, ed. Springer-Verlag, Berlin, Chap. 2
-
See, for example, H. Kogelnik, "Theory of dielectric waveguides," in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, Berlin, 1988), Chap. 2.
-
(1988)
Guided-Wave Optoelectronics
-
-
Kogelnik, H.1
-
12
-
-
0016028004
-
Metal-clad optical waveguides: Analytical and experimental study
-
I. P. Kaminow, W. L. Mammel, and H. P. Weber, "Metal-clad optical waveguides: analytical and experimental study," Appl. Opt. 13, 396-405 (1974).
-
(1974)
Appl. Opt.
, vol.13
, pp. 396-405
-
-
Kaminow, I.P.1
Mammel, W.L.2
Weber, H.P.3
-
13
-
-
48549114117
-
Electromagnetic interactions of molecules with metal surfaces
-
G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
-
(1984)
Phys. Rep.
, vol.113
, pp. 195-287
-
-
Ford, G.W.1
Weber, W.H.2
-
14
-
-
84894390501
-
-
note
-
As discussed in Ref. 13, the use of Fresnel coefficients is not rigorously correct when the dielectric film thickness of a metal-clad waveguide is much smaller than the wavelength of light. For this case a nonlocal model must be employed to describe reflection from a metal. By restricting the integration regime in the calculation of an effective radiative-damping rate, the use of a nonlocal model is not required because the use of Fresnel coefficients produces the same field spectra for the range of normalized transverse wave numbers examined.
-
-
-
|