-
1
-
-
33746898508
-
Is the four-color conjecture almost false?
-
Beraha, S. and Kahane, J. (1979) Is the four-color conjecture almost false? J. Combin. Theory Ser. B 27 1-12.
-
(1979)
J. Combin. Theory Ser. B
, vol.27
, pp. 1-12
-
-
Beraha, S.1
Kahane, J.2
-
4
-
-
0002630105
-
Location of zeros of chromatic and related polynomials of graphs
-
Brenti, F., Royle, G. F. and Wagner, D. G. (1994) Location of zeros of chromatic and related polynomials of graphs. Can. J. Math. 46 55-80.
-
(1994)
Can. J. Math.
, vol.46
, pp. 55-80
-
-
Brenti, F.1
Royle, G.F.2
Wagner, D.G.3
-
6
-
-
84971724951
-
A zero-free interval for chromatic polynomials of graphs
-
Jackson, B. (1993) A zero-free interval for chromatic polynomials of graphs. Combinatorics, Probability and Computing 2 325-336.
-
(1993)
Combinatorics, Probability and Computing
, vol.2
, pp. 325-336
-
-
Jackson, B.1
-
8
-
-
0002144725
-
A lower bound for the Hadwiger number of a graph as a function of the average degree of its vertices
-
Kostochka, A. (1982) A lower bound for the Hadwiger number of a graph as a function of the average degree of its vertices. Discret. Analyz. Novosibirsk 38 37-58.
-
(1982)
Discret. Analyz. Novosibirsk
, vol.38
, pp. 37-58
-
-
Kostochka, A.1
-
9
-
-
0000079797
-
Homomorphieeigenschaften und mittlere Kantendichte von Graphen
-
Mader, W. (1967) Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann. 174 265-268.
-
(1967)
Math. Ann.
, vol.174
, pp. 265-268
-
-
Mader, W.1
-
10
-
-
0001358201
-
Chromatic roots of families of graphs
-
(Alavi, Chartrand, Oellermann and Schwenk, eds), Wiley, New York
-
Read, R. C. and Royle, G. F. (1991) Chromatic roots of families of graphs. In Graph Theory, Combinatorics, and Applications (Alavi, Chartrand, Oellermann and Schwenk, eds), Wiley, New York, pp. 1009-1029.
-
(1991)
Graph Theory, Combinatorics, and Applications
, pp. 1009-1029
-
-
Read, R.C.1
Royle, G.F.2
-
11
-
-
0002461816
-
Chromatic polynomials
-
(L. W. Beineke and R. J. Wilson, eds), Academic Press
-
Read, R. C. and Tutte, W. T. (1988) Chromatic polynomials. In Selected Topics in Graph Theory, volume 3 (L. W. Beineke and R. J. Wilson, eds), Academic Press, pp. 15-42.
-
(1988)
Selected Topics in Graph Theory
, vol.3
, pp. 15-42
-
-
Read, R.C.1
Tutte, W.T.2
-
12
-
-
84976013923
-
An extremal function for complete subgraphs
-
Thomason, A. (1984) An extremal function for complete subgraphs. Math. Proc. Camb. Phil. Soc. 95 261-265.
-
(1984)
Math. Proc. Camb. Phil. Soc.
, vol.95
, pp. 261-265
-
-
Thomason, A.1
-
13
-
-
84968519010
-
Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface
-
Thomassen, C. (1991) Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface. Trans. Amer. Math. Soc. 323 605-635.
-
(1991)
Trans. Amer. Math. Soc.
, vol.323
, pp. 605-635
-
-
Thomassen, C.1
-
14
-
-
33845337775
-
Über eine Eigenschaft der ebenen Komplexe
-
Wagner, K. (1937) Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114 570-590.
-
(1937)
Math. Ann.
, vol.114
, pp. 570-590
-
-
Wagner, K.1
-
15
-
-
0009227317
-
Über eine Erweiterung eines Satzes von Kuratowski
-
Wagner, K. (1937) Über eine Erweiterung eines Satzes von Kuratowski. Deutsche Math. 2 280-285.
-
(1937)
Deutsche Math.
, vol.2
, pp. 280-285
-
-
Wagner, K.1
-
16
-
-
0041199288
-
Zeros of chromatic polynomials
-
(P. Cameron, ed.), Academic Press, London
-
Woodall, D. R. (1977) Zeros of chromatic polynomials. In Combinatorial Surveys, Proc. Sixth British Combinatorial Conference (P. Cameron, ed.), Academic Press, London, pp. 199-223.
-
(1977)
Combinatorial Surveys, Proc. Sixth British Combinatorial Conference
, pp. 199-223
-
-
Woodall, D.R.1
-
17
-
-
0001276360
-
A zero-free interval for chromatic polynomials
-
Woodall, D. R. (1992) A zero-free interval for chromatic polynomials. Discrete Math. 101 333-341.
-
(1992)
Discrete Math.
, vol.101
, pp. 333-341
-
-
Woodall, D.R.1
-
18
-
-
85033145359
-
The largest zero of the chromatic polynomial
-
to appear
-
Woodall, D. R. The largest zero of the chromatic polynomial. Discrete Math., to appear.
-
Discrete Math.
-
-
Woodall, D.R.1
|