메뉴 건너뛰기




Volumn 25, Issue 5, 1997, Pages 2228-2258

Good exact confidence sets for a multivariate normal mean

Author keywords

Confidence sets; Coverage probability; James Stein estimator; Multivariate normal mean; Pseudo empirical bayes construction; Stein type estimator; Volume

Indexed keywords


EID: 0031491042     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1069362396     Document Type: Article
Times cited : (18)

References (26)
  • 1
    • 0011564321 scopus 로고
    • A robust generalized Bayes estimate and confidence region for a multivariate normal mean
    • BERGER, J. O. (1980). A robust generalized Bayes estimate and confidence region for a multivariate normal mean. Ann. Statist. 8 716-761.
    • (1980) Ann. Statist. , vol.8 , pp. 716-761
    • Berger, J.O.1
  • 3
    • 0040926087 scopus 로고
    • Characterizations of complete classes of tests of some multiparametric hypotheses, with applications to likelihood ratio tests
    • BIRNBAUM, A. (1955). Characterizations of complete classes of tests of some multiparametric hypotheses, with applications to likelihood ratio tests. Ann. Math. Statist. 26 21-36.
    • (1955) Ann. Math. Statist. , vol.26 , pp. 21-36
    • Birnbaum, A.1
  • 4
    • 0000903981 scopus 로고
    • On the admissibility of invariant estimators of one or more location parameters
    • BROWN, L. D. (1966). On the admissibility of invariant estimators of one or more location parameters. Ann. Math. Statist. 37 1087-1136.
    • (1966) Ann. Math. Statist. , vol.37 , pp. 1087-1136
    • Brown, L.D.1
  • 5
    • 21844488686 scopus 로고
    • Optimal confidence sets, bioequivalence and the limacon of pascal
    • BROWN, L. D., CASELLA, G. and HWANG, J. T. G. (1995). Optimal confidence sets, bioequivalence and the limacon of pascal. J. Amer. Statist. Assoc. 90 880-889.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 880-889
    • Brown, L.D.1    Casella, G.2    Hwang, J.T.G.3
  • 6
    • 0001370552 scopus 로고
    • Empirical Bayes confidence sets for the mean of a multivariate normal distribution
    • CASELLA, G. and HWANG, J. T. (1983). Empirical Bayes confidence sets for the mean of a multivariate normal distribution. J. Amer. Statist. Assoc. 78 688-698.
    • (1983) J. Amer. Statist. Assoc. , vol.78 , pp. 688-698
    • Casella, G.1    Hwang, J.T.2
  • 8
    • 0040956126 scopus 로고
    • Admissibility implications for different criteria in confidence estimation
    • COHEN, A. and STRAWDERMAN, W. E. (1973). Admissibility implications for different criteria in confidence estimation. Ann. Statist. 1 363-366.
    • (1973) Ann. Statist. , vol.1 , pp. 363-366
    • Cohen, A.1    Strawderman, W.E.2
  • 9
    • 0039177369 scopus 로고
    • Minimax Bayes set and point estimators of a multivariate normal mean
    • Univ. Michigan
    • FAITH, R. E. (1976). Minimax Bayes set and point estimators of a multivariate normal mean. Technical Report 66, Univ. Michigan.
    • (1976) Technical Report , vol.66
    • Faith, R.E.1
  • 10
    • 0010299498 scopus 로고
    • On the relation among shortest confidence intervals of different types
    • GHOSH, J. K. (1961). On the relation among shortest confidence intervals of different types. Calcutta Statist. Assoc. Bull. 147-152.
    • (1961) Calcutta Statist. Assoc. Bull. , pp. 147-152
    • Ghosh, J.K.1
  • 12
    • 0039769844 scopus 로고
    • Interval estimation in structural error-in-variables model with partial replication
    • HUWANG, L. (1995). Interval estimation in structural error-in-variables model with partial replication. J. Multivariate Anal. 55 230-245.
    • (1995) J. Multivariate Anal. , vol.55 , pp. 230-245
    • Huwang, L.1
  • 13
    • 0000841986 scopus 로고
    • Fieller's problems and resampling techniques
    • HWANG, J. T. G. (1995). Fieller's problems and resampling techniques. Statist. Sinica 5 161-172.
    • (1995) Statist. Sinica , vol.5 , pp. 161-172
    • Hwang, J.T.G.1
  • 14
    • 0000488448 scopus 로고
    • Minimax confidence sets for the mean of a multivariate normal distribution
    • HWANG, J. T. and CASELLA, G. (1982). Minimax confidence sets for the mean of a multivariate normal distribution. Ann. Statist. 10 868-881.
    • (1982) Ann. Statist. , vol.10 , pp. 868-881
    • Hwang, J.T.1    Casella, G.2
  • 15
    • 0001870139 scopus 로고
    • Improved set estimators for a multivariate normal mean
    • HWANG, J. T. and CASELLA, G. (1984). Improved set estimators for a multivariate normal mean. Statist. Decisions (Suppl.) 1 3-16.
    • (1984) Statist. Decisions (Suppl.) , vol.1 , pp. 3-16
    • Hwang, J.T.1    Casella, G.2
  • 16
    • 0002022550 scopus 로고
    • Improved confidence sets for the coefficients of a linear model with spherically symmetric errors
    • HWANG, J. T. and CHEN, J. (1986). Improved confidence sets for the coefficients of a linear model with spherically symmetric errors. Ann. Statist. 14 444-460.
    • (1986) Ann. Statist. , vol.14 , pp. 444-460
    • Hwang, J.T.1    Chen, J.2
  • 17
    • 0001486499 scopus 로고
    • Estimation with quadratic loss function
    • Univ. California Press, Berkeley
    • JAMES, W. and STEIN, C. (1961). Estimation with quadratic loss function. Proc. Fourth Berkeley Symp. Math. Statist. Probab. 1 361-379. Univ. California Press, Berkeley.
    • (1961) Proc. Fourth Berkeley Symp. Math. Statist. Probab. , vol.1 , pp. 361-379
    • James, W.1    Stein, C.2
  • 18
    • 0011421778 scopus 로고
    • Inadmissibility of the usual confidence sets for the mean of a multivariate normal population
    • JOSHI, V. M. (1967). Inadmissibility of the usual confidence sets for the mean of a multivariate normal population. Ann. Math. Statist. 38 1868-1875.
    • (1967) Ann. Math. Statist. , vol.38 , pp. 1868-1875
    • Joshi, V.M.1
  • 19
    • 0040956129 scopus 로고
    • Admissibility of the usual confidence sets for the mean of a univariate or bivariate normal population
    • JOSHI, V. M. (1969). Admissibility of the usual confidence sets for the mean of a univariate or bivariate normal population. Ann. Math. Statist. 40 1042-1067.
    • (1969) Ann. Math. Statist. , vol.40 , pp. 1042-1067
    • Joshi, V.M.1
  • 20
    • 84944400469 scopus 로고
    • Length of confidence intervals
    • PRATT, J. W. (1961). Length of confidence intervals. J. Amer. Statist. Assoc. 56 541-567.
    • (1961) J. Amer. Statist. Assoc. , vol.56 , pp. 541-567
    • Pratt, J.W.1
  • 21
    • 0039769840 scopus 로고
    • Improved confidence sets for the mean of a multivariate normal distribution
    • SHINOZAKI, N. (1989). Improved confidence sets for the mean of a multivariate normal distribution. Ann. Inst. Statist. Math. 41 331-346.
    • (1989) Ann. Inst. Statist. Math. , vol.41 , pp. 331-346
    • Shinozaki, N.1
  • 22
    • 0000813561 scopus 로고
    • Inadmissibility of the usual estimator for the mean of a multivariate normal distribution
    • Univ. California Press, Berkeley
    • STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc. Third Berkeley Symp. Math. Statist. Probab. 1 197-206. Univ. California Press, Berkeley.
    • (1956) Proc. Third Berkeley Symp. Math. Statist. Probab. , vol.1 , pp. 197-206
    • Stein, C.1
  • 23
    • 0011331867 scopus 로고
    • Confidence sets for the mean of a multivariate normal distribution
    • STEIN, C. (1962). Confidence sets for the mean of a multivariate normal distribution. J. Roy. Statist. Soc. Ser. B 24 265-296.
    • (1962) J. Roy. Statist. Soc. Ser. B , vol.24 , pp. 265-296
    • Stein, C.1
  • 24
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • STEIN, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135-1151.
    • (1981) Ann. Statist. , vol.9 , pp. 1135-1151
    • Stein, C.1
  • 26
    • 0040956127 scopus 로고
    • Good exact confidence sets for the mean vector of a multivariate normal distribution
    • Academia Sinica, Taipei.
    • TSENG, Y. L. and BROWN, L. D. (1995). Good exact confidence sets for the mean vector of a multivariate normal distribution. Technical report, Inst. Statistical Science, Academia Sinica, Taipei.
    • (1995) Technical Report, Inst. Statistical Science
    • Tseng, Y.L.1    Brown, L.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.