-
2
-
-
0000728518
-
On the sum of digits of real numbers represented in the dyadic system
-
BESICOVITCH, A.S.: On the sum of digits of real numbers represented in the dyadic system. - Math. Ann. 110, 1934, 321-330.
-
(1934)
Math. Ann.
, vol.110
, pp. 321-330
-
-
Besicovitch, A.S.1
-
4
-
-
0000671226
-
On the mulfifractal analysis of measures
-
BROWN, G., G. MICHON, and J. PEYRIÈRE: On the mulfifractal analysis of measures. -J. Statist. Phys. 66, 1992, 775-790.
-
(1992)
J. Statist. Phys.
, vol.66
, pp. 775-790
-
-
Brown, G.1
Michon, G.2
Peyrière, J.3
-
5
-
-
44049118235
-
Multifractal decomposition of Moran fractals
-
CAWLEY, R., and R.D. MAULDIN: Multifractal decomposition of Moran fractals. - Adv. in Math. 92, 1992, 196-236.
-
(1992)
Adv. in Math.
, vol.92
, pp. 196-236
-
-
Cawley, R.1
Mauldin, R.D.2
-
6
-
-
0001305569
-
The Hausdorff dimension distribution of finite measures in euclidcan spaces
-
CUTLER, C.D.: The Hausdorff dimension distribution of finite measures in euclidcan spaces. - Canad. J. Math. 38, 1986, 1459-1484.
-
(1986)
Canad. J. Math.
, vol.38
, pp. 1459-1484
-
-
Cutler, C.D.1
-
7
-
-
84971851116
-
Connecting ergodicity and dimension in dynamical systems
-
CUTLER, C.D.: Connecting ergodicity and dimension in dynamical systems. - Ergodic Theory Dynamical Systems 10, 1990, 451-462.
-
(1990)
Ergodic Theory Dynamical Systems
, vol.10
, pp. 451-462
-
-
Cutler, C.D.1
-
8
-
-
84974307248
-
Dimensions associated with recurrent self-similar sets
-
DELIU, A., J.S. GERONIMO, R. SHONKWILER, and D. HARDIN: Dimensions associated with recurrent self-similar sets. - Math. Proc. Camb. Phil. Soc. 110, 1991, 327-36.
-
(1991)
Math. Proc. Camb. Phil. Soc.
, vol.110
, pp. 327-336
-
-
Deliu, A.1
Geronimo, J.S.2
Shonkwiler, R.3
Hardin, D.4
-
9
-
-
0002672692
-
The fractional dimension of a set defined by decimal properties
-
EGGLESTON, H.G.: The fractional dimension of a set defined by decimal properties. -Quart. J. Math. Oxford Ser. 20, 1949, 31-6.
-
(1949)
Quart. J. Math. Oxford Ser.
, vol.20
, pp. 31-36
-
-
Eggleston, H.G.1
-
12
-
-
0001265433
-
Fractals and self similarity
-
HUTCHINSON, J.E.: Fractals and self similarity. - Indiana Univ. Math. J. 30, 1981, 713-47.
-
(1981)
Indiana Univ. Math. J.
, vol.30
, pp. 713-747
-
-
Hutchinson, J.E.1
-
13
-
-
33646913445
-
Dimensions and measures in infinite iterated function systems
-
MAULDIN, R.D., and M. URBAŃSKI: Dimensions and measures in infinite iterated function systems. - Proc. London Math. Soc. 73, 1996, 105-155.
-
(1996)
Proc. London Math. Soc.
, vol.73
, pp. 105-155
-
-
Mauldin, R.D.1
Urbański, M.2
-
14
-
-
0010902305
-
Hausdorff measure of infinitely generated self-similar sets
-
MORÁN, M.: Hausdorff measure of infinitely generated self-similar sets. - Monatsh. Math. 122, 1996, 387-399.
-
(1996)
Monatsh. Math.
, vol.122
, pp. 387-399
-
-
Morán, M.1
-
15
-
-
22044442365
-
Singularity of self-similar measures with respect to Hausdorff measures
-
to appear
-
MORÁN, M., and J.-M. REY: Singularity of self-similar measures with respect to Hausdorff measures. - Trans. Amer. Math. Soc. (to appear).
-
Trans. Amer. Math. Soc.
-
-
Morán, M.1
Rey, J.-M.2
-
16
-
-
85027614017
-
A multifractal formalism
-
OLSEN, L.: A multifractal formalism. - Adv. Math. 116, 1995, 82-196.
-
(1995)
Adv. Math.
, vol.116
, pp. 82-196
-
-
Olsen, L.1
-
18
-
-
84971178557
-
Functions continuous and singular with respect to a Hausdorff measure
-
ROGERS, C.A., and S.J. TAYLOR: Functions continuous and singular with respect to a Hausdorff measure. - Mathematika 8, 1961, 1-31.
-
(1961)
Mathematika
, vol.8
, pp. 1-31
-
-
Rogers, C.A.1
Taylor, S.J.2
-
19
-
-
84966239752
-
Separation properties for self-similar sets
-
SCHIEF, A.: Separation properties for self-similar sets. - Proc. Amer. Math. Soc. 122, 1994, 111-115.
-
(1994)
Proc. Amer. Math. Soc.
, vol.122
, pp. 111-115
-
-
Schief, A.1
-
20
-
-
38249011990
-
Measures and self-similarity
-
SPEAR, D.W.: Measures and self-similarity. - Adv. in Math. 91(2), 1992, 143-157.
-
(1992)
Adv. in Math.
, vol.91
, Issue.2
, pp. 143-157
-
-
Spear, D.W.1
-
21
-
-
84974022175
-
The measure theory of random fractals
-
TAYLOR, S.J.: The measure theory of random fractals. - Math. Proc. Camb. Phil. Soc. 100, 1986, 383-406.
-
(1986)
Math. Proc. Camb. Phil. Soc.
, vol.100
, pp. 383-406
-
-
Taylor, S.J.1
-
22
-
-
84966224394
-
Packing measure, and its evaluation for a Brownian path
-
TAYLOR, S.J., and C. TRICOT: Packing measure, and its evaluation for a Brownian path. - Trans. Amer. Math. Soc. 288(2), 1985, 679-699.
-
(1985)
Trans. Amer. Math. Soc.
, vol.288
, Issue.2
, pp. 679-699
-
-
Taylor, S.J.1
Tricot, C.2
-
23
-
-
84971877468
-
Two definitions of fractional dimension
-
TRICOT, C.: Two definitions of fractional dimension. - Math. Proc. Camb. Phil. Soc. 91, 1982, 57-74.
-
(1982)
Math. Proc. Camb. Phil. Soc.
, vol.91
, pp. 57-74
-
-
Tricot, C.1
-
25
-
-
0039605191
-
Fractals and hyperspaces
-
Springer-Verlag
-
WICKS, K.R.: Fractals and Hyperspaces. - Lecture Notes in Math. 1492, Springer-Verlag, 1992.
-
(1992)
Lecture Notes in Math.
, vol.1492
-
-
Wicks, K.R.1
-
26
-
-
84956256298
-
Dimension, entropy and Liapunov exponents
-
YOUNG, L.-S.: Dimension, entropy and Liapunov exponents. - Ergodic Theory Dynamical Systems 2, 1982, 109-24.
-
(1982)
Ergodic Theory Dynamical Systems
, vol.2
, pp. 109-124
-
-
Young, L.-S.1
|