-
2
-
-
38249005253
-
Intuitionistic validity in T-normal Kripke structures
-
Buss, S.: Intuitionistic validity in T-normal Kripke structures. Ann. Pure Appl. Logic 59, 159-173 (1993)
-
(1993)
Ann. Pure Appl. Logic
, vol.59
, pp. 159-173
-
-
Buss, S.1
-
3
-
-
21844514867
-
Strictly primitive recursive realizability
-
Damnjanovic, Z.: Strictly primitive recursive realizability, I. JSL 59, No. 4, 1210-1227 (1994)
-
(1994)
I. JSL
, vol.59
, Issue.4
, pp. 1210-1227
-
-
Damnjanovic, Z.1
-
6
-
-
0000068081
-
Implicational complexity in intuitionistic arithmetic
-
Leivant, D.: Implicational complexity in intuitionistic arithmetic. JSL 46, 240-248 (1981)
-
(1981)
JSL
, vol.46
, pp. 240-248
-
-
Leivant, D.1
-
7
-
-
84981477945
-
On the structure of Kripke models of Heyting arithmetic
-
Markovic, Z.: On the structure of Kripke models of Heyting arithmetic. MLQ 39, 531-538 (1993)
-
(1993)
MLQ
, vol.39
, pp. 531-538
-
-
Markovic, Z.1
-
8
-
-
0002625904
-
A short course in ordinal analysis
-
Aczel, P. et al. (ed.), Cambridge: Cambridge University Press
-
Pohlers, W.: A short course in ordinal analysis. In: Aczel, P. et al. (ed.) Proof Theory, pp. 27-79 Cambridge: Cambridge University Press 1992
-
(1992)
Proof Theory
, pp. 27-79
-
-
Pohlers, W.1
-
9
-
-
0000640966
-
Applications of Kripke models
-
Smorynski, C.: Applications of Kripke models. In: [T73], pp. 324-391
-
T73
, pp. 324-391
-
-
Smorynski, C.1
-
11
-
-
0010722215
-
-
ILLC Prepublication Series, ML-92-09, Amsterdam
-
Troelstra, A.S.: Realizability. ILLC Prepublication Series, ML-92-09, Amsterdam: (1992)
-
(1992)
Realizability
-
-
Troelstra, A.S.1
-
13
-
-
84972545704
-
Finite Kripke models of HA are locally PA
-
van Dalen, D., Mulder, H., Krabbe, E.C.W., Visser, A.: Finite Kripke Models of HA are locally PA. Notre Dame J. Formal Logic 27, 528-532 (1986)
-
(1986)
Notre Dame J. Formal Logic
, vol.27
, pp. 528-532
-
-
Van Dalen, D.1
Mulder, H.2
Krabbe, E.C.W.3
Visser, A.4
-
14
-
-
0010722529
-
Classical and intuitionistic models of arithmetic
-
to appear
-
Wehmeier, K.F.: Classical and Intuitionistic Models of Arithmetic. Notre Dame J. Formal Logic (to appear)
-
Notre Dame J. Formal Logic
-
-
Wehmeier, K.F.1
|