메뉴 건너뛰기




Volumn 10, Issue 9, 1997, Pages 1717-1729

An improved time series prediction by applying the layer-by-layer learning method to FIR neural networks

Author keywords

FIR neural network; Gradient descent learning algorithm; Lorenz equation; Mackey Glass equation; Nonlinear autoregression; Optimization layer by layer; Time series prediction

Indexed keywords

LEARNING ALGORITHMS; MATHEMATICAL MODELS; NUMERICAL METHODS; OPTIMIZATION; TIME SERIES ANALYSIS;

EID: 0031470161     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(97)00066-X     Document Type: Article
Times cited : (19)

References (23)
  • 1
    • 0000029787 scopus 로고
    • FIR and IIR synapses, a new neural network architecture for time series modeling
    • Back, A.D., & Tsoi, A.C. (1991). FIR and IIR synapses, a new neural network architecture for time series modeling. Neural Computation, 3, 375-385.
    • (1991) Neural Computation , vol.3 , pp. 375-385
    • Back, A.D.1    Tsoi, A.C.2
  • 2
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • Baldi, P., & Hornik, K. (1989). Neural networks and principal component analysis: learning from examples without local minima. Neural Networks, 2, 53-58.
    • (1989) Neural Networks , vol.2 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 3
    • 0026954346 scopus 로고
    • Forecasting the behavior of multivariate time series using neural networks
    • Chakraborty, K., Mehrotra, K., Mohan, C.K., & Ranka, S. (1992). Forecasting the behavior of multivariate time series using neural networks. Neural Networks, 5, 961-970.
    • (1992) Neural Networks , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 5
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math. Control Signals System, 2, 303-314.
    • (1989) Math. Control Signals System , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0345066282 scopus 로고
    • Continuous-time temporal back-propagation with adaptable time delays
    • Day, S.D., & Davenport, M.R. (1991). Continuous-time temporal back-propagation with adaptable time delays. IEEE Trans. Neural Networks.
    • (1991) IEEE Trans. Neural Networks
    • Day, S.D.1    Davenport, M.R.2
  • 7
    • 0029182199 scopus 로고
    • An accelerated learning algorithm for multilayer perceptrons: Optimization layer by layer
    • Ergezinger, S., & Thomsen, E. (1995). An accelerated learning algorithm for multilayer perceptrons: optimization layer by layer. IEEE Trans. Neural Networks, 6.
    • (1995) IEEE Trans. Neural Networks , vol.6
    • Ergezinger, S.1    Thomsen, E.2
  • 8
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2, 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 9
    • 0142109863 scopus 로고
    • Global analysis of parallel analog networks with retarded feedback
    • Herz, A.V.M. (1991). Global analysis of parallel analog networks with retarded feedback. Phys. Rev. A, 44, 1415-1418.
    • (1991) Phys. Rev. A , vol.44 , pp. 1415-1418
    • Herz, A.V.M.1
  • 10
    • 0037531009 scopus 로고
    • Sequential state generation by model neural networks
    • Kleinfeld, D. (1986). Sequential state generation by model neural networks. Proc. Natl Acad. Sci., 83, 9469-9473.
    • (1986) Proc. Natl Acad. Sci. , vol.83 , pp. 9469-9473
    • Kleinfeld, D.1
  • 12
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code
    • LeCun, Y. et al. (1989). Backpropagation applied to handwritten zip code. Neural Computation, 1, 541-551.
    • (1989) Neural Computation , vol.1 , pp. 541-551
    • LeCun, Y.1
  • 13
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz, E.N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130
    • Lorenz, E.N.1
  • 14
    • 0002291616 scopus 로고
    • Neural net architectures for temporal sequence processing
    • A.S. Weigend and N.A. Gershenfeld (Eds.), Reading: Addison-Wesley
    • Mozer, M.C. (1993). Neural net architectures for temporal sequence processing. In A.S. Weigend and N.A. Gershenfeld (Eds.), Time Series Prediction: Forecasting the Future and Understanding the Past. Reading: Addison-Wesley.
    • (1993) Time Series Prediction: Forecasting the Future and Understanding the Past
    • Mozer, M.C.1
  • 15
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning representations by back-propagating errors. Nature (London), 323, 533-536.
    • (1986) Nature (London) , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 16
    • 0001553626 scopus 로고
    • Temporal association in asymmetric neural networks
    • Sompolinsky, H., & Kanter, I. (1986). Temporal association in asymmetric neural networks. Phys. Rev. Lett., 57, 2861-2864.
    • (1986) Phys. Rev. Lett. , vol.57 , pp. 2861-2864
    • Sompolinsky, H.1    Kanter, I.2
  • 17
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • D. A. Rand and L. S. Young (eds), Berlin: Springer-Verlag
    • Takens, F. (1981). Detecting strange attractors in turbulence. In D. A. Rand and L. S. Young (eds), Lecture notes in Math., Vol. 898. Berlin: Springer-Verlag.
    • (1981) Lecture Notes in Math. , vol.898
    • Takens, F.1
  • 18
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks vs. Box-Jenkins methodology
    • Tang, Z., de Almeida, C., & Fishwick, P.A. (1991). Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation, 57(5), 1.
    • (1991) Simulation , vol.57 , Issue.5 , pp. 1
    • Tang, Z.1    De Almeida, C.2    Fishwick, P.A.3
  • 21
    • 0000358422 scopus 로고
    • Time series prediction by using a connectionist network with internal delay lines
    • A.S. Weigend and N.A. Gershenfeld (Eds.), Reading: Addison-Wesley
    • Wan, E.A. (1993). Time series prediction by using a connectionist network with internal delay lines. In A.S. Weigend and N.A. Gershenfeld (Eds.), Time series prediction: Forecasting the future and understanding the past. Reading: Addison-Wesley.
    • (1993) Time Series Prediction: Forecasting the Future and Understanding the Past
    • Wan, E.A.1
  • 22
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • Williams, R.J., & Peng, J. (1990). An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Computation, 2, 490-501.
    • (1990) Neural Computation , vol.2 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 23
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R.J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1, 270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.