-
2
-
-
85023849575
-
On planning assemblies
-
Urbana-Champaign, IL
-
B. K. Natarajan, “On planning assemblies," in Proc. 4th ACM Symp. on Computational Geometry, Urbana-Champaign, IL, 1988, pp. 299-308.
-
(1988)
Proc.
, pp. 299-308
-
-
Natarajan, B.K.1
-
4
-
-
0001949141
-
Partitioning a planar assembly into two connected parts is NP-complete
-
L. Kavraki and M. N. Kolountzakis, “Partitioning a planar assembly into two connected parts is NP-complete,” Inf. Process. Lett., vol. 3, no. 5, pp. 159-165, 1995.
-
(1995)
Inf. Process. Lett.
, vol.3
, Issue.5
, pp. 159-165
-
-
Kavraki, L.1
Kolountzakis, M.N.2
-
5
-
-
85033224342
-
On monotone paths among obstacles, with applications to planning assemblies
-
Saarbrücken. Germany
-
E. M. Arkin, R. Connelly and J. S. B. Mitchell, “On monotone paths among obstacles, with applications to planning assemblies.” in Proc. 5th ACM Symp. on Computational Geometry, Saarbrücken. Germany, 1989, pp. 334-343.
-
(1989)
Proc. 5Th ACM Symp. On Computational Geometry
, pp. 334-343
-
-
Arkin, E.M.1
Connelly, R.2
Mitchell, J.S.B.3
-
6
-
-
0028752140
-
Geometric reasoning about mechanical assembly
-
R. H. Wilson and J.-C. Latombe, “Geometric reasoning about mechanical assembly,” Art if Intell., vol. 71. no. 2, pp. 371-396, 1994.
-
(1994)
Art If Intell.
, vol.71
, Issue.2
, pp. 371-396
-
-
Wilson, R.H.1
Latombe, J.-C.2
-
7
-
-
0003357416
-
Movable separability of sets
-
G. T. Toussaint, ed., Amsterdam: Elsevier
-
G. T. Toussaint, “Movable separability of sets,” in Computational Geometry, G. T. Toussaint, ed., Amsterdam: Elsevier, 1985.
-
(1985)
Computational Geometry
-
-
Toussaint, G.T.1
-
8
-
-
0004047384
-
Separating two simple polygons by a sequence of translations
-
R. Pollack, M. Sharir and S. Sifrony, “Separating two simple polygons by a sequence of translations,” Discrete Computai. Geometry, vol. 3, pp. 123-136, 1988.
-
(1988)
Discrete Computai.Geometry
, vol.3
, pp. 123-136
-
-
Pollack, R.1
Sharir, M.2
Sifrony, S.3
-
9
-
-
0001311086
-
Assembly sequences for polyhedral
-
A. Schweikard and R. H. Wilson, “Assembly sequences for polyhedral” Algorithmica, vol. 13, no. 6, pp. 539-552, 1995.
-
(1995)
Algorithmica
, vol.13
, Issue.6
, pp. 539-552
-
-
Schweikard, A.1
Wilson, R.H.2
-
10
-
-
0002740435
-
Efficient generation of ¿'-directional assembly sequences
-
Atlanta, GA
-
P. Agarwal, M. de Berg, D. Halperin and M. Sharir, “Efficient generation of ¿'-directional assembly sequences,” in Proc. 7th ACM-SIAM Symp. on Discrete Algorithms, Atlanta, GA, 1996, pp. 122-131.
-
(1996)
Proc. 7Th ACM-SIAM Symp. On Discrete Algorithms
, pp. 122-131
-
-
Agarwal, P.1
De, M.2
Berghalperin, D.3
Sharir, M.4
-
11
-
-
0029178185
-
A simple and efficient procedure for polyhedral assembly partitioning under infinitesimal motions
-
Nagoya, Japan
-
L. J. Guibas, D. Halperin, H. Hirukawa, J.-C. Latombe and R. H. Wilson, “A simple and efficient procedure for polyhedral assembly partitioning under infinitesimal motions,” in Proc. IEEE Int. Conf. on Robotics Automat., Nagoya, Japan, 1995, pp. 2553-2560.
-
(1995)
Proc. IEEE Int. Conf. On Robotics Automat.
, pp. 2553-2560
-
-
Guibas, L.J.1
Halperin, D.2
Hirukawa, H.3
Latombe, J.-C.4
Wilson, R.H.5
-
12
-
-
0029358653
-
Two-handed assembly sequencing
-
R. H. Wilson, L. Kavraki, T. Lozano-Perez and J.-C. Latombe, “Two-handed assembly sequencing,” Int. J. Robotics Res., vol. 14, no. 4, pp. 335-350, 1995.
-
(1995)
Int. J. Robotics Res.
, vol.14
, Issue.4
, pp. 335-350
-
-
Wilson, R.H.1
Kavraki, L.2
Lozano-Perez, T.3
Latombe, J.-C.4
-
16
-
-
0002240938
-
On the number of cells defined by a set of polynomials, C
-
R. Pollack and M. Roy, “On the number of cells defined by a set of polynomials,” C. R. Acad. Sci. Paris, vol. 316, no. 1, pp. 573-577, 1993.
-
(1993)
R. Acad. Sci.Paris
, vol.316
, Issue.1
, pp. 573-577
-
-
Pollack, R.1
Roy, M.2
-
17
-
-
0008406362
-
A new algorithm to find a point in every cell defined by a family of polynomials
-
B. Caviness and J. Johnson, eds, Berlin: Springer
-
S. Basu, R. Pollack and M.-F. Roy, “A new algorithm to find a point in every cell defined by a family of polynomials.” in Quantifier Elimination and Cylindrical Algebraic Decomposition, B. Caviness and J. Johnson, eds, Berlin: Springer-Verlag. To appear.
-
Quantifier Elimination and Cylindrical Algebraic Decomposition
-
-
Basu, S.1
Pollack, R.2
Roy, M.-F.3
-
18
-
-
0030552315
-
Vertical decompositions for triangles in 3-space
-
M. de Berg, L. J. Guibas and D. Halperin, “Vertical decompositions for triangles in 3-space," Discrete Computat. Geometry, vol. 15, pp. 35-61, 1996.
-
(1996)
Discrete Computat. Geometry
, vol.15
, pp. 35-61
-
-
De, M.1
Bergguibas, L.J.2
Halperin, D.3
-
20
-
-
0001798952
-
Arrangements
-
J. E. Goodman and J. O'Rourke, eds, Boca Raton, FL; CRC Press
-
D. Halperin, “Arrangements,” in The Handbook of Discrete and Computational Geometry, J. E. Goodman and J. O'Rourke, eds, Boca Raton, FL; CRC Press. 1997, pp. 389-412.
-
(1997)
The Handbook of Discrete and Computational Geometry
, pp. 389-412
-
-
Halperin, D.1
|