-
1
-
-
30244552871
-
-
M. Frank, C. A. Mears, S. E. Labov, F. Azgui, M. A. Lindemann, L. J. Hiller, H. Netel, and A. Barfknecht, Nucl. Instrum. Methods Phys. Res. A 370, 41 (1996).
-
(1996)
Nucl. Instrum. Methods Phys. Res. A
, vol.370
, pp. 41
-
-
Frank, M.1
Mears, C.A.2
Labov, S.E.3
Azgui, F.4
Lindemann, M.A.5
Hiller, L.J.6
Netel, H.7
Barfknecht, A.8
-
2
-
-
0031165933
-
-
S. Friedrich, K. Segall, M. C. Gaidis, C. M. Wilson, D. E. Prober, P. J. Kindlmann, A. E. Szymkowiak, and S. H. Moseley, IEEE Trans. Appl. Supercond. 7, 3383 (1997).
-
(1997)
IEEE Trans. Appl. Supercond.
, vol.7
, pp. 3383
-
-
Friedrich, S.1
Segall, K.2
Gaidis, M.C.3
Wilson, C.M.4
Prober, D.E.5
Kindlmann, P.J.6
Szymkowiak, A.E.7
Moseley, S.H.8
-
3
-
-
0000573126
-
-
H. Kraus, F. V. Freilitzsch, J. Jochum, R. L. Mossbauer, T. Peterreins, and F. Probst, Phys. Lett. B 321, 195 (1989).
-
(1989)
Phys. Lett. B
, vol.321
, pp. 195
-
-
Kraus, H.1
Freilitzsch, F.V.2
Jochum, J.3
Mossbauer, R.L.4
Peterreins, T.5
Probst, F.6
-
4
-
-
0031166331
-
-
P. Verhoeve, N. Rando, A. Peacock, A. van Dordrecht, and A. Poelaert, IEEE Trans. Appl. Supercond. 7, 3359 (1997).
-
(1997)
IEEE Trans. Appl. Supercond.
, vol.7
, pp. 3359
-
-
Verhoeve, P.1
Rando, N.2
Peacock, A.3
Van Dordrecht, A.4
Poelaert, A.5
-
6
-
-
0002441259
-
-
S. Friedrich, K. Segall, D. Toledano, D. E. Prober, A. E. Szymkowiak, and S. H. Moseley, Nucl. Instrum. Methods Phys. Res. A 370, 44 (1996); M. C. Gaidis, S. Friedrich, D. E. Prober, A. E. Szymkowiak, and S. H. Moseley, J. Low Temp. Phys. 93, 603 (1993).
-
(1996)
Nucl. Instrum. Methods Phys. Res. A
, vol.370
, pp. 44
-
-
Friedrich, S.1
Segall, K.2
Toledano, D.3
Prober, D.E.4
Szymkowiak, A.E.5
Moseley, S.H.6
-
7
-
-
0002441259
-
-
S. Friedrich, K. Segall, D. Toledano, D. E. Prober, A. E. Szymkowiak, and S. H. Moseley, Nucl. Instrum. Methods Phys. Res. A 370, 44 (1996); M. C. Gaidis, S. Friedrich, D. E. Prober, A. E. Szymkowiak, and S. H. Moseley, J. Low Temp. Phys. 93, 603 (1993).
-
(1993)
J. Low Temp. Phys.
, vol.93
, pp. 603
-
-
Gaidis, M.C.1
Friedrich, S.2
Prober, D.E.3
Szymkowiak, A.E.4
Moseley, S.H.5
-
8
-
-
5644256761
-
-
Ph.D. thesis, Yale University
-
S. Friedrich, Ph.D. thesis, Yale University, 1997.
-
(1997)
-
-
Friedrich, S.1
-
9
-
-
85033289921
-
-
note
-
The points at lower energy in Fig. 1 are due to substrate absorptions.
-
-
-
-
10
-
-
84990155425
-
-
Leipzig
-
J. Jochum, H. Kraus, M. Gutsche, B. Kemmather, F. V. Freilitzsch, and R. L. Mossbauer, Ann. Phys. (Leipzig) 2, 611 (1993).
-
(1993)
Ann. Phys.
, vol.2
, pp. 611
-
-
Jochum, J.1
Kraus, H.2
Gutsche, M.3
Kemmather, B.4
Freilitzsch, F.V.5
Mossbauer, R.L.6
-
11
-
-
85033281300
-
-
note
-
We divide up the energies in the trap/counter electrode into bins of 10 μV and calculate the number of quasiparticles entering/leaving each bin through inelastic scattering, tunneling, recombination or outdiffusion. Both scattering and tunneling rates are energy dependent (see Refs. 6, 7, 11, and 14).
-
-
-
-
12
-
-
85033292126
-
-
note
-
The tunneling time in the normal state is calculated from the resistivity of the barrier. In the superconducting state, the tunnel time is shorter for quasiparticle energies near the gap edge because of the larger density of states (see Ref. 8). This is accounted for in the model.
-
-
-
-
13
-
-
85033320550
-
-
note
-
2] relates the resistivity, ρ, to the diffusion constant with a minimum number of band-structure dependent quantities; n(Ef) is the density of states at the Fermi surface.
-
-
-
-
14
-
-
0000663392
-
-
V. Narayanamurti, R. C. Dynes, P. Hu, H. Smith, and W. F. Brinkman, Phys. Rev. B 18, 6041 (1978).
-
(1978)
Phys. Rev. B
, vol.18
, pp. 6041
-
-
Narayanamurti, V.1
Dynes, R.C.2
Hu, P.3
Smith, H.4
Brinkman, W.F.5
-
15
-
-
19644382445
-
-
S. B. Kaplan, C. C. Chi, D. N. Langenberg, J. J. Chang, S. Jafarey, and D. J. Scalapino, Phys. Rev. B 14, 4854 (1976).
-
(1976)
Phys. Rev. B
, vol.14
, pp. 4854
-
-
Kaplan, S.B.1
Chi, C.C.2
Langenberg, D.N.3
Chang, J.J.4
Jafarey, S.5
Scalapino, D.J.6
-
16
-
-
85033287794
-
-
note
-
There is a second process, called back tunneling, which gives a current in the forward direction: a pair splits in the trap, and coherently one electron from that pair forms a pair in the counter electrode. Here also there is a reverse process which cancels the forward current at low voltage.
-
-
-
-
17
-
-
85033288356
-
-
note
-
Our present devices are limited to the voltage range V<90 μV by Fiske modes. With a smaller junction length, biasing at higher voltages will be easily accomplished.
-
-
-
|