메뉴 건너뛰기




Volumn 36, Issue 6, 1997, Pages 505-518

Application of recurrent neural networks in batch reactors Part I. NARMA modelling of the dynamic behaviour of the heat transfer fluid temperature

Author keywords

Batch reactors; Mathematical modelling; Neural networks; Systems identification

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; DYNAMICS; HEAT TRANSFER; IDENTIFICATION (CONTROL SYSTEMS); MATHEMATICAL MODELS; PACKED BEDS; TEMPERATURE;

EID: 0031373070     PISSN: 02552701     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0255-2701(97)00030-5     Document Type: Article
Times cited : (12)

References (32)
  • 1
    • 0039507509 scopus 로고
    • Optimization of semibatch polymerization reactions
    • G.D. Cawthon, K.S. Knaebel, Optimization of semibatch polymerization reactions, Comput. Chem. Eng. 13 (1989) 63-72.
    • (1989) Comput. Chem. Eng. , vol.13 , pp. 63-72
    • Cawthon, G.D.1    Knaebel, K.S.2
  • 4
    • 0002328270 scopus 로고
    • Application of estimation techniques to batch reactors I. Modelling thermal effects
    • D. Bonvin, P. de Vallière, D.W.T. Rippin, Application of estimation techniques to batch reactors I. Modelling thermal effects, Comput. Chem. Eng. 13 (1989) 1-9.
    • (1989) Comput. Chem. Eng. , vol.13 , pp. 1-9
    • Bonvin, D.1    De Vallière, P.2    Rippin, D.W.T.3
  • 5
    • 0002328268 scopus 로고
    • Application of estimation techniques to batch reactors II. Experimental studies in state and parameter estimation
    • P. de Vallière, D. Bonvin, Application of estimation techniques to batch reactors II. Experimental studies in state and parameter estimation, Comput. Chem. Eng. 13 (1989) 11-20.
    • (1989) Comput. Chem. Eng. , vol.13 , pp. 11-20
    • De Vallière, P.1    Bonvin, D.2
  • 6
    • 0025517277 scopus 로고
    • Multiple filter methods for detection of hazardous states in an industrial plant
    • R. King, E.D. Gilles, Multiple filter methods for detection of hazardous states in an industrial plant, AIChE J. 36 (1990) 1697-1706.
    • (1990) AIChE J. , vol.36 , pp. 1697-1706
    • King, R.1    Gilles, E.D.2
  • 7
    • 0026186694 scopus 로고
    • Current problems concerning batch reactions
    • J. Villermaux, C. Georgakis, Current problems concerning batch reactions, Int. Chem. Eng. 31 (1991) 434-440.
    • (1991) Int. Chem. Eng. , vol.31 , pp. 434-440
    • Villermaux, J.1    Georgakis, C.2
  • 8
    • 16144368445 scopus 로고    scopus 로고
    • Development of a mathematical model and a simulator for the analysis and optimisation of batch reactors: Experimental model characterisation using a reaction calorimeter
    • J.M. Zaldívar, H. Hernández, C. Barcons, Development of a mathematical model and a simulator for the analysis and optimisation of batch reactors: Experimental model characterisation using a reaction calorimeter, Thermochim. Acta 289 (1996) 267-302.
    • (1996) Thermochim. Acta , vol.289 , pp. 267-302
    • Zaldívar, J.M.1    Hernández, H.2    Barcons, C.3
  • 10
    • 0022011031 scopus 로고
    • Input-ouput parametric models for nonlinear systems. Part I: Deterministic nonlinear systems
    • I.J. Leontaritis, S.A. Billings, Input-ouput parametric models for nonlinear systems. Part I: Deterministic nonlinear systems, Int. J. Control 41 (1985) 303-328.
    • (1985) Int. J. Control , vol.41 , pp. 303-328
    • Leontaritis, I.J.1    Billings, S.A.2
  • 11
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • G. Cybenko, Approximation by superposition of a sigmoidal function, Math. Control Signals Syst. 2 (1989) 303-314.
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal aproximators
    • K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal aproximators, Neural Networks 2 (1989) 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 15
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J.J. Moody, C.J. Darken, Fast learning in networks of locally-tuned processing units, Neural Comput. 1 (1989) 281-294.
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, J.J.1    Darken, C.J.2
  • 16
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K.S. Narendra, K. Pathasarthy, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks 1 (1990) 4-27.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.S.1    Pathasarthy, K.2
  • 17
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modelling and control of chemical process systems
    • N. Bhat, T.J. McAvoy, Use of neural nets for dynamic modelling and control of chemical process systems, Comput. Chem. Eng. 14 (1990) 573-583.
    • (1990) Comput. Chem. Eng. , vol.14 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2
  • 18
    • 84954943722 scopus 로고
    • Neural networks for nonlinear dynamic systems modelling and identification
    • S. Chen, S.A. Billings, Neural networks for nonlinear dynamic systems modelling and identification, Int. J. Control 56 (1992) 319-346.
    • (1992) Int. J. Control , vol.56 , pp. 319-346
    • Chen, S.1    Billings, S.A.2
  • 19
    • 0001136496 scopus 로고
    • Identification using feedforward networks
    • A.U. Levin, K.S. Narendra, Identification using feedforward networks, Neural Comput. 7 (1995) 349-357.
    • (1995) Neural Comput. , vol.7 , pp. 349-357
    • Levin, A.U.1    Narendra, K.S.2
  • 20
    • 0026117466 scopus 로고
    • Gradient methods for the optimization of dynamical systems containing neural networks
    • K.S. Narendra, K. Parthasarathy, Gradient methods for the optimization of dynamical systems containing neural networks, IEEE Trans. Neural Networks 2 (1991) 252-262.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 252-262
    • Narendra, K.S.1    Parthasarathy, K.2
  • 21
    • 0003581164 scopus 로고
    • Identification and control of nonlinear systems using neural network models: Design and stability analysis
    • Department of Electronic Engineering Systems, University of South California, Los Angeles, USA. September
    • M.M. Polycarpou, P.A. Ioannou, Identification and control of nonlinear systems using neural network models: Design and stability analysis. Department of Electronic Engineering Systems, University of South California, Los Angeles, USA. Technical Report 91-09-01, September 1991.
    • (1991) Technical Report 91-09-01
    • Polycarpou, M.M.1    Ioannou, P.A.2
  • 22
    • 0027463301 scopus 로고
    • Dynamic process modeling with recurrent neural networks
    • Y. Yonhg, M. Nikolaou, Dynamic process modeling with recurrent neural networks, AIChE J. 39 (1993) 1654-1667.
    • (1993) AIChE J. , vol.39 , pp. 1654-1667
    • Yonhg, Y.1    Nikolaou, M.2
  • 23
    • 0028392484 scopus 로고
    • Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models
    • B. Srinivasan, U.R. Prasad, N.J. Rao, Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models, IEEE Trans. Neural Networks 5 (1994) 213-228.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 213-228
    • Srinivasan, B.1    Prasad, U.R.2    Rao, N.J.3
  • 24
    • 0028391673 scopus 로고
    • Application of recurrent multilayer perceptron in modeling complex process dynamics
    • A.G. Parlos, K.T. Chong, A.F. Atiya, Application of recurrent multilayer perceptron in modeling complex process dynamics, IEEE Trans. Neural Networks 5 (1994) 255-266.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 255-266
    • Parlos, A.G.1    Chong, K.T.2    Atiya, A.F.3
  • 27
    • 0001708151 scopus 로고
    • The FIRES project: Experimental study of thermal runaway due to agitation problems during toluene nitration
    • J.M. Zaldívar, H. Hernández, H. Nieman, E. Molga, C. Bassani, The FIRES project: experimental study of thermal runaway due to agitation problems during toluene nitration, J. Loss Prev. Process Ind. 6 (1993) 319-326.
    • (1993) J. Loss Prev. Process Ind. , vol.6 , pp. 319-326
    • Zaldívar, J.M.1    Hernández, H.2    Nieman, H.3    Molga, E.4    Bassani, C.5
  • 28
    • 0002219407 scopus 로고
    • Equipment Characterization
    • A. Benuzzi, J.M. Zaldívar (Eds.), Kluwer, Dordrecht
    • C. Barcons, Equipment Characterization, in: A. Benuzzi, J.M. Zaldívar (Eds.), Safety of Chemical Batch Reactors and Storage Tanks, Kluwer, Dordrecht, 1991, pp. 99-124.
    • (1991) Safety of Chemical Batch Reactors and Storage Tanks , pp. 99-124
    • Barcons, C.1
  • 29
    • 0019360613 scopus 로고
    • Heat transfer and power measurements in stirred tanks using heat flow calorimetry
    • J.R. Bourne, M. Buerli, W. Regenass, Heat transfer and power measurements in stirred tanks using heat flow calorimetry, Chem. Eng. Sci. 36 (1981) 347-354.
    • (1981) Chem. Eng. Sci. , vol.36 , pp. 347-354
    • Bourne, J.R.1    Buerli, M.2    Regenass, W.3
  • 30
    • 0027676059 scopus 로고
    • Development of a mathematical model and a numerical nimulator for the analysis and optimization of batch reactors
    • H. Hernández, J.M. Zaldívar, C. Barcons, Development of a mathematical model and a numerical nimulator for the analysis and optimization of batch reactors, Comput. Chem. Eng. 17S (1993) 45-50.
    • (1993) Comput. Chem. Eng. , vol.17 S , pp. 45-50
    • Hernández, H.1    Zaldívar, J.M.2    Barcons, C.3
  • 31
    • 0024921354 scopus 로고
    • Generic Constraints on underspecified target trajectories
    • IEE, New York, June
    • M.I. Jordan, Generic Constraints on underspecified target trajectories, IJCNN Proceedings, IEE, New York, June, 1989.
    • (1989) IJCNN Proceedings
    • Jordan, M.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.