-
3
-
-
18244401511
-
A worksheet for the Johnson-Neyman technique
-
Butsch, R. L. C. (1944). A worksheet for the Johnson-Neyman technique. Journal of Experimental Education, 12, 226-241.
-
(1944)
Journal of Experimental Education
, vol.12
, pp. 226-241
-
-
Butsch, R.L.C.1
-
4
-
-
85033284342
-
-
(Research Bulletin RB69-68). Princeton, NJ: Educational Testing Service
-
Carroll, J. B., & Wilson, G. F. (1969). An interactive-computer program for the Johnson-Neyman technique in the case of two groups, two predictor variables, and one criterion variable (Research Bulletin RB69-68). Princeton, NJ: Educational Testing Service.
-
(1969)
An Interactive-computer Program for the Johnson-Neyman Technique in the Case of Two Groups, Two Predictor Variables, and One Criterion Variable
-
-
Carroll, J.B.1
Wilson, G.F.2
-
5
-
-
18244386859
-
An interactive-computer program for the Johnson-Neyman technique in the case of two groups, two predictor variables, and one criterion variable
-
Carroll, J. B., & Wilson, G. F. (1970). An interactive-computer program for the Johnson-Neyman technique in the case of two groups, two predictor variables, and one criterion variable. Educational and Psychological Measurement, 30, 121-132.
-
(1970)
Educational and Psychological Measurement
, vol.30
, pp. 121-132
-
-
Carroll, J.B.1
Wilson, G.F.2
-
10
-
-
18244362215
-
Using Mathematica to solve Johnson-Neyman problems
-
Hunka, S. (1994). Using Mathematica to solve Johnson-Neyman problems. Mathematica in Education, 3(3), 32-36.
-
(1994)
Mathematica in Education
, vol.3
, Issue.3
, pp. 32-36
-
-
Hunka, S.1
-
11
-
-
85004766156
-
Identifying regions of significance in ANCOVA problems having non-homogeneous regressions
-
Hunka, S. (1995). Identifying regions of significance in ANCOVA problems having non-homogeneous regressions. British Journal of Mathematical and Statistical Psychology, 48, 161-188.
-
(1995)
British Journal of Mathematical and Statistical Psychology
, vol.48
, pp. 161-188
-
-
Hunka, S.1
-
12
-
-
18244370646
-
The Johnson-Neyman technique, its theory and application
-
Johnson, P. O., & Fay, L. C. (1950). The Johnson-Neyman technique, its theory and application. Psychometrika, 15, 349-367.
-
(1950)
Psychometrika
, vol.15
, pp. 349-367
-
-
Johnson, P.O.1
Fay, L.C.2
-
13
-
-
84911521393
-
On determining three dimensional regions of significance
-
Johnson, P. O., & Hoyt, C. (1947). On determining three dimensional regions of significance. Journal of Experimental Education, 15, 342-353.
-
(1947)
Journal of Experimental Education
, vol.15
, pp. 342-353
-
-
Johnson, P.O.1
Hoyt, C.2
-
15
-
-
0002074493
-
Tests of certain linear hypotheses and their application to some educational problems
-
Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1, 57-93.
-
(1936)
Statistical Research Memoirs
, vol.1
, pp. 57-93
-
-
Johnson, P.O.1
Neyman, J.2
-
16
-
-
84965903877
-
ANCOVA - A one covariate Johnson-Neyman algorithm
-
Karpman, M. B. (1980). ANCOVA - A one covariate Johnson-Neyman algorithm. Educational and Psychological Measurement, 40, 791-793.
-
(1980)
Educational and Psychological Measurement
, vol.40
, pp. 791-793
-
-
Karpman, M.B.1
-
18
-
-
84973837218
-
Comparing two non-parallel regression lines with the parametric alternative to analysis of covariance using SPSS-X or SAS - The Johnson-Neyman technique
-
Karpman, M. B. (1986). Comparing two non-parallel regression lines with the parametric alternative to analysis of covariance using SPSS-X or SAS - The Johnson-Neyman technique. Educational and Psychological Measurement, 46, 639-644.
-
(1986)
Educational and Psychological Measurement
, vol.46
, pp. 639-644
-
-
Karpman, M.B.1
-
19
-
-
0003868165
-
-
Pacific Grove, CA: Brooks/Cole
-
Kirk, R. E. (1982). Experimental design. Pacific Grove, CA: Brooks/Cole.
-
(1982)
Experimental Design
-
-
Kirk, R.E.1
-
20
-
-
18244405643
-
Steps for the application of the Johnson-Neyman technique - A sample analysis
-
Koenker, R. H., & Hansen, C. W. (1942). Steps for the application of the Johnson-Neyman technique - A sample analysis. Journal of Experimental Education, 10, 164-173.
-
(1942)
Journal of Experimental Education
, vol.10
, pp. 164-173
-
-
Koenker, R.H.1
Hansen, C.W.2
-
21
-
-
84973816347
-
A Fortran V IBM computer program for the Johnson-Neyman technique
-
Kush, J. C. (1986). A Fortran V IBM computer program for the Johnson-Neyman technique. Educational and Psychological Measurement, 46, 185-187.
-
(1986)
Educational and Psychological Measurement
, vol.46
, pp. 185-187
-
-
Kush, J.C.1
-
22
-
-
84965917359
-
JOHN-NEY: An interactive program for computing the Johnson-Neyman confidence region for nonsignificant prediction differences
-
Lautenschlager, G. J. (1987). JOHN-NEY: An interactive program for computing the Johnson-Neyman confidence region for nonsignificant prediction differences. Applied Psychological Measurement, 11, 194-195.
-
(1987)
Applied Psychological Measurement
, vol.11
, pp. 194-195
-
-
Lautenschlager, G.J.1
-
26
-
-
0007337915
-
Analysis of covariance
-
L. K. Edwards (Ed.), New York: Marcel Dekker
-
Maxwell, S. E., O'Callaghan, M. F., & Delaney, H. D. (1993). Analysis of covariance. In L. K. Edwards (Ed.), Applied analysis of variance in behavioral science (pp. 63-104). New York: Marcel Dekker.
-
(1993)
Applied Analysis of Variance in Behavioral Science
, pp. 63-104
-
-
Maxwell, S.E.1
O'Callaghan, M.F.2
Delaney, H.D.3
-
29
-
-
0003005101
-
On the relationship between the Johnson-Neyman region of significance and statistical tests of parallel within-group regressions
-
Rogosa, D. (1981). On the relationship between the Johnson-Neyman region of significance and statistical tests of parallel within-group regressions. Educational and Psychological Measurement, 41, 73-84.
-
(1981)
Educational and Psychological Measurement
, vol.41
, pp. 73-84
-
-
Rogosa, D.1
-
31
-
-
85033278361
-
Graphical description of Johnson-Neyman outcomes for linear and quadratic regression surfaces
-
April. Paper presented Chicago
-
Schafer, W. D., & Wang, Y. (1991, April). Graphical description of Johnson-Neyman outcomes for linear and quadratic regression surfaces. Paper presented at the Annual Meeting of the American Educational Research Association, Chicago.
-
(1991)
Annual Meeting of the American Educational Research Association
-
-
Schafer, W.D.1
Wang, Y.2
-
34
-
-
0040408219
-
Some computational and model equivalences in analysis of variance of unequal-subclass-numbers data
-
Searle, S. R., Speed, F. M., & Henderson, H. V. (1981). Some computational and model equivalences in analysis of variance of unequal-subclass-numbers data. The American Statistician, 35(1), 16-33.
-
(1981)
The American Statistician
, vol.35
, Issue.1
, pp. 16-33
-
-
Searle, S.R.1
Speed, F.M.2
Henderson, H.V.3
|