메뉴 건너뛰기




Volumn 29, Issue 4, 1997, Pages 878-889

Co-existence of the occupied and vacant phase in boolean models in three or more dimensions

Author keywords

Boolean model; Continuum percolation

Indexed keywords

MATHEMATICAL MODELS; THEOREM PROVING;

EID: 0031369969     PISSN: 00018678     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0001867800047935     Document Type: Article
Times cited : (14)

References (14)
  • 1
    • 0001707493 scopus 로고
    • Strict monotonicity for critical points in percolation and ferromagnetic models
    • AIZENMAN, M. AND GRIMMETT, G. (1990) Strict monotonicity for critical points in percolation and ferromagnetic models. J. Statist. Phys. 63, 817-835.
    • (1990) J. Statist. Phys. , vol.63 , pp. 817-835
    • Aizenman, M.1    Grimmett, G.2
  • 2
    • 21344480033 scopus 로고
    • Finite clusters in high-density continuous percolation: Compression and sphericality
    • ALEXANDER, K. (1993) Finite clusters in high-density continuous percolation: compression and sphericality. Prob. Theory Rel. Fields 97, 35-63.
    • (1993) Prob. Theory Rel. Fields , vol.97 , pp. 35-63
    • Alexander, K.1
  • 3
    • 0011588717 scopus 로고
    • An upper bound on the critical probability for the three-dimensional cubic lattice
    • CAMPANINO, M. AND RUSSO, L. (1985) An upper bound on the critical probability for the three-dimensional cubic lattice. Ann. Prob. 13, 478-491.
    • (1985) Ann. Prob. , vol.13 , pp. 478-491
    • Campanino, M.1    Russo, L.2
  • 4
    • 0000657887 scopus 로고
    • Random plane networks
    • GILBERT, E. N. (1961) Random plane networks. J. SIAM. 9, 533-543.
    • (1961) J. SIAM. , vol.9 , pp. 533-543
    • Gilbert, E.N.1
  • 6
    • 0000145052 scopus 로고
    • On continuum percolation
    • HALL, P. (1985) On continuum percolation. Ann. Prob. 13, 1250-1266.
    • (1985) Ann. Prob. , vol.13 , pp. 1250-1266
    • Hall, P.1
  • 7
    • 0002697969 scopus 로고
    • The critical probability of bond percolation on the square lattice equals 1/2
    • KESTEN, H. (1980) The critical probability of bond percolation on the square lattice equals 1/2. Commun. Math. Phys. 74, 41-59.
    • (1980) Commun. Math. Phys. , vol.74 , pp. 41-59
    • Kesten, H.1
  • 8
    • 0040865543 scopus 로고
    • Uniqueness of the unbounded occupied and vacant components in Boolean models
    • MEESTER, R. AND ROY, R. (1994) Uniqueness of the unbounded occupied and vacant components in Boolean models. Ann. Appl. Prob. 4, 933-951.
    • (1994) Ann. Appl. Prob. , vol.4 , pp. 933-951
    • Meester, R.1    Roy, R.2
  • 10
    • 0000819241 scopus 로고
    • Coincidence of critical points in percolation problems
    • MENSHIKOV, M. V. (1986) Coincidence of critical points in percolation problems. J. Soviet Math. Dokl. 33, 856-859.
    • (1986) J. Soviet Math. Dokl. , vol.33 , pp. 856-859
    • Menshikov, M.V.1
  • 11
    • 0010713527 scopus 로고    scopus 로고
    • Continuum percolation and Euclidean minimal spanning trees in high dimensions
    • PENROSE, M. D. (1996) Continuum percolation and Euclidean minimal spanning trees in high dimensions. Ann. Appl. Prob. 6, 528-544.
    • (1996) Ann. Appl. Prob. , vol.6 , pp. 528-544
    • Penrose, M.D.1
  • 12
    • 0040271346 scopus 로고
    • 2
    • 2. Ann. Prob. 18, 1563-1575.
    • (1990) Ann. Prob. , vol.18 , pp. 1563-1575
    • Roy, R.1
  • 13
    • 0008390916 scopus 로고
    • Continuous models of percolation theory I
    • ZUEV, S. A. AND SIDORENKO, A. F. (1985a) Continuous models of percolation theory I. Theor. Math. Phys. 62, 76-86.
    • (1985) Theor. Math. Phys. , vol.62 , pp. 76-86
    • Zuev, S.A.1    Sidorenko, A.F.2
  • 14
    • 0008360996 scopus 로고
    • Continuous models of percolation theory II
    • ZUEV, S. A. AND SIDORENKO, A. F. (1985b) Continuous models of percolation theory II. Theor. Math. Phys. 62, 253-262.
    • (1985) Theor. Math. Phys. , vol.62 , pp. 253-262
    • Zuev, S.A.1    Sidorenko, A.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.