메뉴 건너뛰기




Volumn 12, Issue 4, 1997, Pages 465-477

Polynomial Time-Marching for Three-Dimensional Wave Equations

Author keywords

Boundary value problems; Chebyshev collocation; Differential matrix; Three dimensional problems; Time marching

Indexed keywords

BOUNDARY CONDITIONS; MATHEMATICAL OPERATORS; PARTIAL DIFFERENTIAL EQUATIONS; POLYNOMIALS;

EID: 0031368580     PISSN: 08857474     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1025633130781     Document Type: Article
Times cited : (10)

References (10)
  • 4
    • 0028458797 scopus 로고
    • Polynomial Time-Marching for Nonperiodic Boundary Value Problems
    • Luo, Y., and Yedlin, M. J. (1994). Polynomial Time-Marching for Nonperiodic Boundary Value Problems, J. Sci. Comput. 9, 123-136.
    • (1994) J. Sci. Comput. , vol.9 , pp. 123-136
    • Luo, Y.1    Yedlin, M.J.2
  • 5
    • 0031083813 scopus 로고
    • Pseudospectral polynomial time-marching for nonreflecting boundary problems
    • Luo, Y., and Yedlin, M. J. (1995). Pseudospectral polynomial time-marching for nonreflecting boundary problems, J. Sci. Comput. 12, 31-50.
    • (1995) J. Sci. Comput. , vol.12 , pp. 31-50
    • Luo, Y.1    Yedlin, M.J.2
  • 7
    • 0022662366 scopus 로고
    • Spectral Methods in Time for Hyperbolic Equations
    • Tal-Ezer, H. (1986). Spectral Methods in Time for Hyperbolic Equations. SIAM J. Numer. Anal. 23, 11-26.
    • (1986) SIAM J. Numer. Anal. , vol.23 , pp. 11-26
    • Tal-Ezer, H.1
  • 8
    • 0043127094 scopus 로고
    • Polynomial Approximation of Functions of Matrices and Applications
    • Tal-Ezer, H. (1989). Polynomial Approximation of Functions of Matrices and Applications, J. Sci. Comput. 4, 25-60.
    • (1989) J. Sci. Comput. , vol.4 , pp. 25-60
    • Tal-Ezer, H.1
  • 9
    • 0004586997 scopus 로고
    • High Degree Polynomial Interpolation in Newton Form
    • Tal-Ezer, H. (1991). High Degree Polynomial Interpolation in Newton Form, SIAM J. Sci. Stat. Comput. 12, 648-667.
    • (1991) SIAM J. Sci. Stat. Comput. , vol.12 , pp. 648-667
    • Tal-Ezer, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.