-
3
-
-
36549091103
-
-
B. Deveaud, J. Shah, T. C. Damen, and W. T. Tsang, Appl. Phys. Lett. 52, 1886 (1988).
-
(1988)
Appl. Phys. Lett.
, vol.52
, pp. 1886
-
-
Deveaud, B.1
Shah, J.2
Damen, T.C.3
Tsang, W.T.4
-
4
-
-
36449003339
-
-
S. Weiss, J. M. Wiesenfeld, D. S. Chemla, G. Raybon, G. Sucha, M. Wegener, G. Eisenstein, C. A. Burrus, A. G. Dentai, U. Koren, B. I. Miller, H. Temkin, R. A. Logan, and T. Tanbun-Ek, Appl. Phys. Lett. 60, 9 (1992).
-
(1992)
Appl. Phys. Lett.
, vol.60
, pp. 9
-
-
Weiss, S.1
Wiesenfeld, J.M.2
Chemla, D.S.3
Raybon, G.4
Sucha, G.5
Wegener, M.6
Eisenstein, G.7
Burrus, C.A.8
Dentai, A.G.9
Koren, U.10
Miller, B.I.11
Temkin, H.12
Logan, R.A.13
Tanbun-Ek, T.14
-
5
-
-
0001759971
-
-
S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, Appl. Phys. Lett. 61, 752 (1992).
-
(1992)
Appl. Phys. Lett.
, vol.61
, pp. 752
-
-
Kan, S.C.1
Vassilovski, D.2
Wu, T.C.3
Lau, K.Y.4
-
6
-
-
0029341818
-
-
D. Vassilovski, T. C. Wu, S. Kan, K. Y. Lau, and C. E. Zah, IEEE Photonics Technol. Lett. 7, 706 (1995).
-
(1995)
IEEE Photonics Technol. Lett.
, vol.7
, pp. 706
-
-
Vassilovski, D.1
Wu, T.C.2
Kan, S.3
Lau, K.Y.4
Zah, C.E.5
-
7
-
-
84990706858
-
-
J. E. M. Haverkort, P. W. M. Blom, P. J. van Hall, J. Claes, and J. H. Wolter, Phys. Status Solidi A 188, 139 (1995).
-
(1995)
Phys. Status Solidi A
, vol.188
, pp. 139
-
-
Haverkort, J.E.M.1
Blom, P.W.M.2
Van Hall, P.J.3
Claes, J.4
Wolter, J.H.5
-
8
-
-
0030143215
-
-
G. Lenz, E. P. Ippen, J. M. Wiesenfeld, M. A. Newkirk, and U. Koren, Appl. Phys. Lett. 68, 2933 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.68
, pp. 2933
-
-
Lenz, G.1
Ippen, E.P.2
Wiesenfeld, J.M.3
Newkirk, M.A.4
Koren, U.5
-
9
-
-
21544480963
-
-
J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, Appl. Phys. Lett. 63, 1179 (1993).
-
(1993)
Appl. Phys. Lett.
, vol.63
, pp. 1179
-
-
Zhou, J.1
Park, N.2
Dawson, J.W.3
Vahala, K.J.4
Newkirk, M.A.5
Miller, B.I.6
-
10
-
-
0030406331
-
-
R. Paiella, G. Hunziker, K. J. Vahala, and U. Koren, Appl. Phys. Lett. 69, 4142 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.69
, pp. 4142
-
-
Paiella, R.1
Hunziker, G.2
Vahala, K.J.3
Koren, U.4
-
11
-
-
0031192178
-
-
G. Hunziker, R. Paiella, K. J. Vahala, and U. Koren, IEEE Photonics Technol. Lett. 9, 907 (1997).
-
(1997)
IEEE Photonics Technol. Lett.
, vol.9
, pp. 907
-
-
Hunziker, G.1
Paiella, R.2
Vahala, K.J.3
Koren, U.4
-
12
-
-
0031108389
-
-
R. Paiella, G. Hunziker, U. Koren, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 3, 529 (1997).
-
(1997)
IEEE J. Sel. Top. Quantum Electron.
, vol.3
, pp. 529
-
-
Paiella, R.1
Hunziker, G.2
Koren, U.3
Vahala, K.J.4
-
13
-
-
0027575254
-
-
M. A. Newkirk, B. I. Miller, U. Koren, M. G. Young, M. Chen, R. M. Jopson, and C. A. Burrus, IEEE Photonics Technol. Lett. 4, 406 (1993).
-
(1993)
IEEE Photonics Technol. Lett.
, vol.4
, pp. 406
-
-
Newkirk, M.A.1
Miller, B.I.2
Koren, U.3
Young, M.G.4
Chen, M.5
Jopson, R.M.6
Burrus, C.A.7
-
14
-
-
85033299628
-
-
note
-
The photon energy of the pump waves was 0.94 eV, which is smaller than the barrier band gap by an amount on the order of the thermal energy kT. Accounting for thermal broadening, we conclude that the electronic states directly modulated by these waves are not bound in any quantum well (i.e., they are purely 3D states), although their wavefunctions are somewhat localized near the wells. As a result, capture from these states is probably faster than capture from more plane-wave-like states that are higher in energy. The study of the dependence of the capture rate on the excitation energy will be the subject of a future work.
-
-
-
-
15
-
-
85033311846
-
-
note
-
In cases where carrier diffusion cannot be neglected, an analysis based on the model of interwell carrier dynamics described in Ref. 12 shows that Eq. (2) remains valid with the intrinsic capture rate rescaled by a geometrical factor (approximately the ratio of the quantum-wells volume to the barriers volume, which in the present structure is close to unity anyway). This is consistent with the results of Refs. 5 and 6.
-
-
-
|