메뉴 건너뛰기




Volumn 15, Issue 1, 1997, Pages 27-38

Linear convexity conditions for rectangular and triangular Bernstein-Bézier surfaces

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; BOUNDARY CONDITIONS; DATA PROCESSING; GEOMETRY; INTERPOLATION; SURFACES;

EID: 0031341073     PISSN: 01678396     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8396(97)81783-9     Document Type: Article
Times cited : (15)

References (7)
  • 1
    • 84921838246 scopus 로고
    • Variation diminishing properties and convexity for the tensor product Bernstein operator
    • Cavaretta, A.S. and Sharma, A. (1992), Variation diminishing properties and convexity for the tensor product Bernstein operator, Lecture Notes in Mathematics 1511, 18-32.
    • (1992) Lecture Notes in Mathematics , vol.1511 , pp. 18-32
    • Cavaretta, A.S.1    Sharma, A.2
  • 2
    • 0001834679 scopus 로고
    • The convexity of Bernstein polynomial s over triangles
    • Chang, G. and Davis, P.J. (1984), The convexity of Bernstein polynomial s over triangles, J. Approx. Theory 40, 11-28.
    • (1984) J. Approx. Theory , vol.40 , pp. 11-28
    • Chang, G.1    Davis, P.J.2
  • 3
    • 0010323046 scopus 로고
    • An improved condition for the convexity of Bernstein-Bézier surfaces over triangles
    • Chang, G.Z. and Feng, Y.Y. (1984), An improved condition for the convexity of Bernstein-Bézier surfaces over triangles, Computer Aided Geometric Design 1, 279-283.
    • (1984) Computer Aided Geometric Design , vol.1 , pp. 279-283
    • Chang, G.Z.1    Feng, Y.Y.2
  • 4
    • 30244444654 scopus 로고
    • A new proof for the convexity of Bernstein-Bézier surfaces over triangles
    • Chang, G.Z. and Feng, Y.Y. (1985), A new proof for the convexity of Bernstein-Bézier surfaces over triangles, Chinese Annals of Mathematics 6, 171-176.
    • (1985) Chinese Annals of Mathematics , vol.6 , pp. 171-176
    • Chang, G.Z.1    Feng, Y.Y.2
  • 5
    • 0002671799 scopus 로고
    • Convexity and Bernstein-Bézier polynomials
    • Laurent, P.J., Le Méhauté, A. and Schumaker, L.L., eds., Academic Press, Boston
    • Dahmen, W. (1991), Convexity and Bernstein-Bézier polynomials, in: Laurent, P.J., Le Méhauté, A. and Schumaker, L.L., eds., Curves and Surfaces, Vol. 1, Academic Press, Boston, 107-134.
    • (1991) Curves and Surfaces , vol.1 , pp. 107-134
    • Dahmen, W.1
  • 6
    • 51249168756 scopus 로고
    • A weak condition for the convexity of tensor-product Bézier and B-spline surfaces
    • Floater, M.S. (1994), A weak condition for the convexity of tensor-product Bézier and B-spline surfaces, Adv. in Comp. Math. 2, 67-80.
    • (1994) Adv. in Comp. Math. , vol.2 , pp. 67-80
    • Floater, M.S.1
  • 7
    • 0039885457 scopus 로고
    • Some sufficient conditions for convexity of multivariate Bernstein-Bézier polynomials and box spline surfaces
    • Lai, M.J. (1990), Some sufficient conditions for convexity of multivariate Bernstein-Bézier polynomials and box spline surfaces, Studia Scient. Math. Hung. 28, 363-374.
    • (1990) Studia Scient. Math. Hung. , vol.28 , pp. 363-374
    • Lai, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.