메뉴 건너뛰기




Volumn 65, Issue 3-4, 1997, Pages 273-291

Continuous extensions to high order Runge-Kutta methods

Author keywords

Hermite interpolation; ODE's; Runge Kutta; Scaling

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL COMPLEXITY; DIFFERENTIAL EQUATIONS; FUNCTION EVALUATION; INTEGRATION; INTERPOLATION;

EID: 0031321538     PISSN: 00207160     EISSN: None     Source Type: Journal    
DOI: 10.1080/00207169708804616     Document Type: Article
Times cited : (4)

References (22)
  • 1
    • 5844392915 scopus 로고
    • Interpolating High Order Runge-Kutta Formulas
    • Bogacki, P. and Shampine, L. F. (1990). Interpolating High Order Runge-Kutta Formulas. Computers Math. Applic., 20, 489-504.
    • (1990) Computers Math. Applic. , vol.20 , pp. 489-504
    • Bogacki, P.1    Shampine, L.F.2
  • 2
    • 0039179843 scopus 로고
    • Coefficients for the study of Runge-Kutta integration processes
    • Butcher, J. C. (1963). Coefficients for the study of Runge-Kutta integration processes. J. Austral. Math. Soc., 3, 185-201.
    • (1963) J. Austral. Math. Soc. , vol.3 , pp. 185-201
    • Butcher, J.C.1
  • 3
    • 0025208499 scopus 로고
    • A fifth order interpolant for the Dormand & Prince Runge-Kutta method
    • Calvo, M., Montijano, J. I. and Randez, L. (1990). A fifth order interpolant for the Dormand & Prince Runge-Kutta method. J. Comput. Appl. Math., 29, 91-100.
    • (1990) J. Comput. Appl. Math. , vol.29 , pp. 91-100
    • Calvo, M.1    Montijano, J.I.2    Randez, L.3
  • 6
    • 0023312263 scopus 로고
    • Two FORTRAN packages for assessing initial value methods
    • Enright, W. H. and Pryce, J. D. (1987). Two FORTRAN packages for assessing initial value methods ACM TOMS, 13, 1-27.
    • (1987) ACM TOMS , vol.13 , pp. 1-27
    • Enright, W.H.1    Pryce, J.D.2
  • 8
    • 5844400335 scopus 로고
    • Initial value routines in the NAG Library
    • Gladwell, I. (1979). Initial value routines in the NAG Library. ACM TOMS, 5, 366-400.
    • (1979) ACM TOMS , vol.5 , pp. 366-400
    • Gladwell, I.1
  • 10
    • 0041590181 scopus 로고
    • DETEST a program for comparing numerical methods for ordinary differential equations
    • University of Toronto, Canada
    • Hall, G., Enright, W. H., Hull, T. E. and Sedgwick, A. E. (1973). DETEST A program for comparing numerical methods for ordinary differential equations. Dept. of Computer Science Tech. Rep., 60, University of Toronto, Canada.
    • (1973) Dept. of Computer Science Tech. Rep. , vol.60
    • Hall, G.1    Enright, W.H.2    Hull, T.E.3    Sedgwick, A.E.4
  • 11
    • 0039638076 scopus 로고
    • Fourth and fifth-order, scaled Runge-Kutta algorithms for treating dense output
    • Horn, M. K. (1983). Fourth and fifth-order, scaled Runge-Kutta algorithms for treating dense output. SIAM J. Numer. Anal., 20, 558-568.
    • (1983) SIAM J. Numer. Anal. , vol.20 , pp. 558-568
    • Horn, M.K.1
  • 14
    • 49149135749 scopus 로고
    • High order embedded Runge-Kutta formulae
    • Prince, P. J. and Dormand, J. R. (1981). High order embedded Runge-Kutta formulae. J. Comput. Appl. Math., 7, 67-76.
    • (1981) J. Comput. Appl. Math. , vol.7 , pp. 67-76
    • Prince, P.J.1    Dormand, J.R.2
  • 15
    • 0022144651 scopus 로고
    • Interpolation for Runge-Kutta methods
    • Shampine, L. F. (1985). Interpolation for Runge-Kutta methods. SIAM J. Numer. Anal., 22, 1014-1027.
    • (1985) SIAM J. Numer. Anal. , vol.22 , pp. 1014-1027
    • Shampine, L.F.1
  • 16
    • 84966237458 scopus 로고
    • Some practical Runge-Kutta formulas
    • Shampine, L. F. (1986). Some practical Runge-Kutta formulas. Math. of Comput., 46, 135-150.
    • (1986) Math. of Comput. , vol.46 , pp. 135-150
    • Shampine, L.F.1
  • 17
    • 0026216091 scopus 로고
    • Numerical Comparisons of some explicit R-K pairs of orders 4 through 8
    • Sharp, P. (1991). Numerical Comparisons of some explicit R-K pairs of orders 4 through 8. ACM TOMS, 17, 387-409.
    • (1991) ACM TOMS , vol.17 , pp. 387-409
    • Sharp, P.1
  • 19
    • 0000573157 scopus 로고
    • Runge-Kutta interpolants based on values form two successive integration steps
    • Tsitouras, Ch. and Papageorgiou, G. (1990). Runge-Kutta interpolants based on values form two successive integration steps. Computing, 43, 255-266.
    • (1990) Computing , vol.43 , pp. 255-266
    • Tsitouras, Ch.1    Papageorgiou, G.2
  • 20
    • 0000468784 scopus 로고
    • Explicit Runge-Kutta methods with estimates of the local truncation error
    • Verner, J. H. (1978). Explicit Runge-Kutta methods with estimates of the local truncation error. SIAM J. Numer. Anal., 15, 772-790.
    • (1978) SIAM J. Numer. Anal. , vol.15 , pp. 772-790
    • Verner, J.H.1
  • 21
    • 0027683528 scopus 로고
    • Differentiable interpolants for High-order Runge-Kutta methods
    • Verner, J. H. (1993). Differentiable interpolants for High-order Runge-Kutta methods. SIAM J. Numer. Anal., 30, 1446-1466.
    • (1993) SIAM J. Numer. Anal. , vol.30 , pp. 1446-1466
    • Verner, J.H.1
  • 22
    • 84966233444 scopus 로고
    • Natural Continuous extensions of Runge-Kutta methods
    • Zennaro, M. (1986). Natural Continuous extensions of Runge-Kutta methods. Math. Comp., 46, 119-133.
    • (1986) Math. Comp. , vol.46 , pp. 119-133
    • Zennaro, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.