-
2
-
-
0000310052
-
On the construction of higher degree three dimensional imbedded integration rules
-
Bemtsen, J., and Espelid, T. O. (1982), “On the Construction of Higher Degree Three Dimensional Imbedded Integration Rules,” SIAM Journal of Numerical Analysis, 25, 222—234.
-
(1982)
SIAM Journal of Numerical Analysis
, vol.25
, pp. 222-234
-
-
Bemtsen, J.1
Espelid, T.O.2
-
3
-
-
0026303073
-
An adaptive algorithm for the approximate calculation of multiple integrals
-
Bemtsen, J., Espelid, T.O., and Genz, A. (1991a), “An Adaptive Algorithm for the Approximate Calculation of Multiple Integrals,” ACM TOMS, 17, 437-451.
-
(1991)
ACM TOMS
, vol.17
, pp. 437-451
-
-
Bemtsen, J.1
Espelid, T.O.2
Genz, A.3
-
4
-
-
0026263188
-
Algorithm 698: Dcuhre- an adaptive multiple integration routine for a vector of integrals
-
Bemtsen, J., Espelid, T.O., and Genz, A. (1991b), “Algorithm 698: DCUHRE- An Adaptive Multiple Integration Routine for a Vector of Integrals,” ACM TOMS, 17, 452-456.
-
(1991)
ACM TOMS
, vol.17
, pp. 452-456
-
-
Bemtsen, J.1
Espelid, T.O.2
Genz, A.3
-
5
-
-
0000727821
-
Predicting working memory failure: A subjective bayesian approach to model selection
-
Carlin, B. P., Kass, R. E., Lerch, J., and Huguenard, B. (1992), “Predicting Working Memory Failure: A Subjective Bayesian Approach to Model Selection,” Journal of the American Statistical Association, 87, 319-327.
-
(1992)
Journal of the American Statistical Association
, vol.87
, pp. 319-327
-
-
Carlin, B.P.1
Kass, R.E.2
Lerch, J.3
Huguenard, B.4
-
6
-
-
0001330334
-
On asymptotic normality of limiting density functions with bayesian implications
-
Chen, C.F. (1985), “On Asymptotic Normality of Limiting Density Functions with Bayesian Implications,” Journal of the Royal Statistical Society, 47, 540-546.
-
(1985)
Journal of the Royal Statistical Society
, vol.47
, pp. 540-546
-
-
Chen, C.F.1
-
7
-
-
0010890901
-
-
technical report, Athens University of Economics, Dept, of Statistics
-
Cools, R., and Dellaportas, P. (1994), “The Role of Embedded Integration Rules in Bayesian Statistics,” technical report, Athens University of Economics, Dept, of Statistics.
-
(1994)
The Role of Embedded Integration Rules in Bayesian Statistics
-
-
Cools, R.1
Dellaportas, P.2
-
8
-
-
38149145908
-
An imbedded family of cubature formulas for n-dimensional product regions
-
Cools, R., and Haegemans, A. (1994), “An Imbedded Family of Cubature Formulas for n-Dimensional Product Regions,” Journal of Computational and Applied Mathematics, 51, 251-262.
-
(1994)
Journal of Computational and Applied Mathematics
, vol.51
, pp. 251-262
-
-
Cools, R.1
Haegemans, A.2
-
10
-
-
0010822615
-
Positive imbedded integration in bayesian analysis
-
Dellaportas, P., and Wright, D. (1991), “Positive Imbedded Integration in Bayesian Analysis,” Statistics and Computing, 1, 1-12.
-
(1991)
Statistics and Computing
, vol.1
, pp. 1-12
-
-
Dellaportas, P.1
Wright, D.2
-
11
-
-
85011447691
-
Computing bayes factors by combining simulation and asymptotic approximations
-
DiCiccio, T.J., Kass, R.E., Raftery, A.E., and Wasserman, L. (in press), “Computing Bayes Factors by Combining Simulation and Asymptotic Approximations,” Journal of the American Statistical Association.
-
Journal of the American Statistical Association
-
-
Diciccio, T.J.1
Kass, R.E.2
Raftery, A.E.3
Wasserman, L.4
-
13
-
-
34848863862
-
Adaptive importance sampling and chaining
-
N. Flournoy and R. K. Tsutakawa, Providence, RI: American Mathematical Society
-
Evans, M. (1991), “Adaptive Importance Sampling and Chaining,” in Statistical Numerical Integration, Contemporary Mathematics, 115, eds. N. Flournoy and R. K. Tsutakawa, Providence, RI: American Mathematical Society, pp. 137-143.
-
(1991)
Statistical Numerical Integration, Contemporary Mathematics
, vol.115
, pp. 137-143
-
-
Evans, M.1
-
14
-
-
0010886640
-
Some integration strategies for problems in statistical inference
-
Evans, M., and Swartz, T. (1992), “Some Integration Strategies for Problems in Statistical Inference,” Computing Science and Statistics, 24, 310-317.
-
(1992)
Computing Science and Statistics
, vol.24
, pp. 310-317
-
-
Evans, M.1
Swartz, T.2
-
15
-
-
84972543992
-
Methods for approximating integrals in statistics with special emphasis on bayesian integration problems
-
Evans, M., and Swartz, T. (1995), “Methods for Approximating Integrals in Statistics With Special Emphasis on Bayesian Integration Problems,” Statistical Science, 10, 254-272.
-
(1995)
Statistical Science
, vol.10
, pp. 254-272
-
-
Evans, M.1
Swartz, T.2
-
16
-
-
0022887130
-
Fully symmetric interpolatory rules for multiple integrals
-
Genz, A. (1986), “Fully Symmetric Interpolatory Rules for Multiple Integrals,” SIAM Journal of Numerical Analysis, 23, 1273-1283.
-
(1986)
SIAM Journal of Numerical Analysis
, vol.23
, pp. 1273-1283
-
-
Genz, A.1
-
17
-
-
0010938728
-
An application of subregion adaptive numerical integration to a bayesian inference problem
-
E. Keramidas, Fairfax, VA: Interface Foundation of America
-
Genz, A., and Kass, R. E. (1991), “An Application of Subregion Adaptive Numerical Integration to a Bayesian Inference Problem,” in Computing Science and Statistics, ed. E. Keramidas, Fairfax, VA: Interface Foundation of America, pp. 441-444.
-
(1991)
Computing Science and Statistics
, pp. 441-444
-
-
Genz, A.1
Kass, R.E.2
-
18
-
-
0030190203
-
Fully symmetric interpolatory rules for multiple integrals over infinite regions
-
Genz, A., and Keister, B. (1996), “Fully Symmetric Interpolatory Rules for Multiple Integrals Over Infinite Regions,” Journal of Computational and Applied Mathematics, 71, 299-309.
-
(1996)
Journal of Computational and Applied Mathematics
, vol.71
, pp. 299-309
-
-
Genz, A.1
Keister, B.2
-
19
-
-
0000074117
-
An imbedded family of fully symmetric numerical integration rules
-
Genz, A., and Malik, A. A. (1983), “An Imbedded Family of Fully Symmetric Numerical Integration Rules,” SIAM Journal of Numerical Analysis, 20, 580-587.
-
(1983)
SIAM Journal of Numerical Analysis
, vol.20
, pp. 580-587
-
-
Genz, A.1
Malik, A.A.2
-
20
-
-
0001667705
-
Bayesian inference in econometric models using monte carlo integration
-
Geweke, J. (1989), “Bayesian Inference in Econometric Models Using Monte Carlo Integration,” Econometrica, 57, 1317-1340.
-
(1989)
Econometrica
, vol.57
, pp. 1317-1340
-
-
Geweke, J.1
-
21
-
-
0011618510
-
Generic, algorithmic approaches to monte carlo integration in bayesian inference
-
Contemporary Mathematics, eds. N. Flournoy and R. K. Tsutakawa, Providence, RI: American Mathematical Society
-
Geweke, J. (1991), “Generic, Algorithmic Approaches to Monte Carlo Integration in Bayesian Inference,” in Statistical Multiple Integration, Contemporary Mathematics, eds. N. Flournoy and R. K. Tsutakawa, Providence, RI: American Mathematical Society, pp. 117-135.
-
(1991)
Statistical Multiple Integration
, pp. 117-135
-
-
Geweke, J.1
-
25
-
-
0002313164
-
On the structures of fully symmetric multidimensional quadrature rules
-
Keast, P., and Lyness, J. N. (1979), “On the Structures of Fully Symmetric Multidimensional Quadrature Rules,” SIAM Journal of Numerical Analysis, 16, 11-29.
-
(1979)
SIAM Journal of Numerical Analysis
, vol.16
, pp. 11-29
-
-
Keast, P.1
Lyness, J.N.2
-
26
-
-
0001117028
-
A comparison of omnibus methods for bayesian computation
-
Monahan, J., and Genz, A. (1996), “A Comparison of Omnibus Methods for Bayesian Computation,” Computing Science and Statistics, 27, 471-480.
-
(1996)
Computing Science and Statistics
, vol.27
, pp. 471-480
-
-
Monahan, J.1
Genz, A.2
-
27
-
-
0031516748
-
Spherical-radial integration rules for bayesian computation
-
Monahan, J., and Genz, A. (1996), (in press), “Spherical-Radial Integration Rules for Bayesian Computation,” Journal of the American Statistical Association, 92.
-
(1996)
Journal of the American Statistical Association
, pp. 92
-
-
Monahan, J.1
Genz, A.2
-
28
-
-
0000691109
-
Applications of a method for the efficient computation of posterior distributions
-
Naylor, J. C., and Smith, A. F. M. (1982), “Applications of a Method for the Efficient Computation of Posterior Distributions,” Applied Statistics, 31, 214-225.
-
(1982)
Applied Statistics
, vol.31
, pp. 214-225
-
-
Naylor, J.C.1
Smith, A.2
-
29
-
-
0000630895
-
A quasirandom approach to integration in bayesian statistics
-
Shaw, J. E. H. (1988a), “A Quasirandom Approach to Integration in Bayesian Statistics,” The Annals of Statistics, 16, 895-914.
-
(1988)
The Annals of Statistics
, vol.16
, pp. 895-914
-
-
Shaw, J.1
-
30
-
-
0000574616
-
Aspects of numerical integration and summarisation
-
J. Bernardo, H. H. Degroot, D. V. Lindley, and A. F. M. Smith, Cambridge, MA: Oxford University Press
-
Shaw, J. E. H. (1988b), “Aspects of Numerical Integration and Summarisation,” in Bayesian Statistics 3, eds. J. Bernardo, H. H. Degroot, D. V. Lindley, and A. F. M. Smith, Cambridge, MA: Oxford University Press, 411-428.
-
(1988)
Bayesian Statistics 3
, pp. 411-428
-
-
Shaw, J.1
-
32
-
-
8344249623
-
An adaptive algorithm for numerical integration over an n-dimensional rectangular region
-
van Dooren, P., and de Ridder, L. (1976), “An Adaptive Algorithm for Numerical Integration over an N-Dimensional Rectangular Region,” Journal of Computational and Applied Mathematics, 2, 207-217.
-
(1976)
Journal of Computational and Applied Mathematics
, vol.2
, pp. 207-217
-
-
Van Dooren, P.1
De Ridder, L.2
|