-
4
-
-
0004057466
-
-
University of Chicago, Chicago
-
R. M. Wald, General Relativity (University of Chicago, Chicago, 1984).
-
(1984)
General Relativity
-
-
Wald, R.M.1
-
6
-
-
0011494045
-
-
edited by S. Coleman, J. B. Hartle, T. Piram, and S. Weinberg World Scientific, Singapore
-
See, e.g., J. J. Halliwell, in Quantum cosmology and baby universes, edited by S. Coleman, J. B. Hartle, T. Piram, and S. Weinberg (World Scientific, Singapore, 1991), pp. 159-243 and references therein.
-
(1991)
Quantum Cosmology and Baby Universes
, pp. 159-243
-
-
Halliwell, J.J.1
-
7
-
-
0001077198
-
-
A. Hosoya and K. Nakao, Class. Quant. Gravit. 7, 163 (1990). For recent status of (2+1 -gravity and more references, see, e.g., S. Carlip, "Lectures on (2+1)-Dimensional Gravity," gr-qc/9503024, (1995).
-
(1990)
Class. Quant. Gravit.
, vol.7
, pp. 163
-
-
Hosoya, A.1
Nakao, K.2
-
8
-
-
0001077198
-
-
gr-qc/9503024
-
A. Hosoya and K. Nakao, Class. Quant. Gravit. 7, 163 (1990). For recent status of (2+1 -gravity and more references, see, e.g., S. Carlip, "Lectures on (2+1)-Dimensional Gravity," gr-qc/9503024, (1995).
-
(1995)
Lectures on (2+1)-Dimensional Gravity
-
-
Carlip, S.1
-
12
-
-
85033121829
-
-
note
-
For type d (which correspond to Bianchi VIII), the representative metric (or standard metric, see Sec. II B) is incorrect, due to incorrectness of the appendix. For detail, see the erratum, which will appear in the journal.
-
-
-
-
16
-
-
0001781505
-
-
H. Nariai, Sci. Rep. Tohoku Univ., I, 34, 160 (1950); 35, 62 (1951).
-
(1951)
Sci. Rep. Tohoku Univ., I
, vol.35
, pp. 62
-
-
-
21
-
-
0041842002
-
Geometry and topology
-
R. Kulkami, K. B. Lee, and F. Raymond, Geometry and Topology, Lect. Notes Math. 1167, 180 (1985).
-
(1985)
Lect. Notes Math.
, vol.1167
, pp. 180
-
-
Kulkami, R.1
Lee, K.B.2
Raymond, F.3
-
22
-
-
85033113409
-
-
note
-
Here, Eq. (9) is understood. The extrinsic curvature therefore has the same homogeneity as the spatial metric.
-
-
-
-
23
-
-
85033116716
-
-
note
-
For simplicity, we identify the set U with a set of representatives. Similar identifications are understood also for the sets of equivalence classes defined subsequently.
-
-
-
-
26
-
-
0003599920
-
-
Cambridge U. P., Cambridge
-
See, e.g., D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of Einstein's Field Equations (Cambridge U. P., Cambridge, 1980).
-
(1980)
Exact Solutions of Einstein's Field Equations
-
-
Kramer, D.1
Stephani, H.2
MacCallum, M.3
Herlt, E.4
-
27
-
-
85033123262
-
-
note
-
33 as a function of other Teichmüller parameters and the three-volume.
-
-
-
|