메뉴 건너뛰기




Volumn 23, Issue 3-4, 1997, Pages 191-205

On the global evolution problem in 2 + 1 gravity

Author keywords

Foliations; Lorentzian manifolds

Indexed keywords


EID: 0031280684     PISSN: 03930440     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0393-0440(97)87804-7     Document Type: Article
Times cited : (53)

References (5)
  • 1
    • 84972545246 scopus 로고
    • Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space
    • [1] H.I. Choi and A. Treibergs, Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space, J. Differ. Geom. 32 (1990) 775-817.
    • (1990) J. Differ. Geom. , vol.32 , pp. 775-817
    • Choi, H.I.1    Treibergs, A.2
  • 2
    • 0001996991 scopus 로고
    • L'intégration des équations de la gravitation relativiste et le problème des n corps
    • [2] A. Lichnerowicz, L'intégration des équations de la gravitation relativiste et le problème des n corps, J. Math. Pures Appl. 23 (1944) 37-63.
    • (1944) J. Math. Pures Appl. , vol.23 , pp. 37-63
    • Lichnerowicz, A.1
  • 3
    • 0003992857 scopus 로고
    • Institute des Hautes Etudes Scientifiques, preprint IHES/M/90/28
    • [3] G. Mess, Lorentz spacetimes of constant curvature, Institute des Hautes Etudes Scientifiques, preprint IHES/M/90/28 (1990).
    • (1990) Lorentz Spacetimes of Constant Curvature
    • Mess, G.1
  • 4
    • 0001706627 scopus 로고
    • Reduction of the Einstein equation in 2 + 1 dimensions to a Hamiltonian system over Teichmüller space
    • [4] V. Moncrief, Reduction of the Einstein equation in 2 + 1 dimensions to a Hamiltonian system over Teichmüller space, J. Math. Phys. 30 (1989) 2907-2914.
    • (1989) J. Math. Phys. , vol.30 , pp. 2907-2914
    • Moncrief, V.1
  • 5
    • 33745120063 scopus 로고
    • Teichmüller theory in riemannian geometry
    • Birkhäuser, Basel
    • [5] A.J. Tromba, Teichmüller Theory in Riemannian Geometry, Lectures in Mathematics (Birkhäuser, Basel, 1992).
    • (1992) Lectures in Mathematics
    • Tromba, A.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.