메뉴 건너뛰기




Volumn 14, Issue 6, 1997, Pages 43-44

Generalization: The hidden agenda of learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; DATABASE SYSTEMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; OPTIMIZATION;

EID: 0031274657     PISSN: 10535888     EISSN: None     Source Type: Journal    
DOI: 10.1109/msp.1997.637310     Document Type: Article
Times cited : (5)

References (18)
  • 1
    • 0000359337 scopus 로고
    • Back-propagation Applied to Handwritten Zip Code Recognition
    • Y. Le Cun, et al., "Back-propagation Applied to Handwritten Zip Code Recognition," Neural Computation, vol. 1, no. 4, pp. 541-551, 1989.
    • (1989) Neural Computation , vol.1 , Issue.4 , pp. 541-551
    • LeCun, Y.1
  • 2
    • 0001942829 scopus 로고
    • Neural Networks and the Bias/Variance Dilemma
    • S. Geman, E. Bienenstock & R. Doursat, "Neural Networks and the Bias/Variance Dilemma." Neural Computation, vol. 4, pp. 1-59, 1992.
    • (1992) Neural Computation , vol.4 , pp. 1-59
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 3
    • 84942737910 scopus 로고
    • Fitting Autoregressive Models for Prediction
    • H. Akaike, "Fitting Autoregressive Models for Prediction," Ann. Inst. Stat. Mat., vol. 21, pp, 243-247, 1969.
    • (1969) Ann. Inst. Stat. Mat. , vol.21 , pp. 243-247
    • Akaike, H.1
  • 4
    • 34250263445 scopus 로고
    • Smoothing Noisy Data with Spline Functions: Estimating the Correct Degree of Smoothing by the Method of Generalized Cross-Validation
    • P. Craven & G. Wahba, "Smoothing Noisy Data with Spline Functions: Estimating the Correct Degree of Smoothing by the Method of Generalized Cross-Validation," Numerical Methematics, vol. 31, 377-403, 1979.
    • (1979) Numerical Methematics , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 5
    • 84998019600 scopus 로고
    • A Generalization Error Estimate for Nonlinear Systems
    • S.Y. Kung, F. Failside, J. Aa. Sorensen & C.A. Kamm (eds.) Piscataway, New Jersey: IEEE
    • J. Larsen, "A Generalization Error Estimate for Nonlinear Systems," in S.Y. Kung, F. Failside, J. Aa. Sorensen & C.A. Kamm (eds.) Neural Networks for Signal Processing 2: Proceedings of the 1992 IEEE-SP Workshop, Piscataway, New Jersey: IEEE, 1992, pp. 29-38.
    • (1992) Neural Networks for Signal Processing 2: Proceedings of the 1992 IEEE-SP Workshop , pp. 29-38
    • Larsen, J.1
  • 6
    • 0026289079 scopus 로고
    • Note on Generalization, Regularization, and Architecture Selection in Nonlinear Learning Systems
    • B.H. Juang, S.Y. Kung & C.A. Kamm (eds.) Piscataway, New Jersey: IEEE
    • J. Moody, "Note on Generalization, Regularization, and Architecture Selection in Nonlinear Learning Systems," in B.H. Juang, S.Y. Kung & C.A. Kamm (eds.) Proceedings of the First IEEE Workshop on Neural Networks for Signal Processing, Piscataway, New Jersey: IEEE, pp. 1-10, 1991.
    • (1991) Proceedings of the First IEEE Workshop on Neural Networks for Signal Processing , pp. 1-10
    • Moody, J.1
  • 7
    • 0003257214 scopus 로고
    • Prediction Risk and Architecture Selection for Neural Networks
    • V. Cherkassky, J.H. Friedman & H. Wechsler (eds.) Berlin, Germany: Springer-Verlag
    • J. Moody, "Prediction Risk and Architecture Selection for Neural Networks" in V. Cherkassky, J.H. Friedman & H. Wechsler (eds.) From Statistics to Neural Networks: Theory and Pattern Recognition Applications, Series F, vol. 136, Berlin, Germany: Springer-Verlag, 1994.
    • (1994) From Statistics to Neural Networks: Theory and Pattern Recognition Applications, Series F , vol.136
    • Moody, J.1
  • 8
    • 0028544395 scopus 로고
    • Network Information Criterion - Determining the Number of Hidden Units for an Artificial Neural Network Model
    • Nov.
    • N. Murata, S. Yoshizawa and & S. Amari, "Network Information Criterion - Determining the Number of Hidden Units for an Artificial Neural Network Model," IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 865-872, Nov. 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 10
    • 84950645271 scopus 로고
    • The Predictive Sample Reuse Method with Application
    • S. Geisser, "The Predictive Sample Reuse Method with Application," Journal of The American Statistical Association, vol. 50, pp. 320-328, 1975.
    • (1975) Journal of the American Statistical Association , vol.50 , pp. 320-328
    • Geisser, S.1
  • 11
    • 0000629975 scopus 로고
    • Cross-validatory Choice and Assessment of Statistical Predictors
    • M. Stone, "Cross-validatory Choice and Assessment of Statistical Predictors," Journal of the Royal Statistical Society 5, vol. 36, no. 2, pp. 111-147, 1974.
    • (1974) Journal of the Royal Statistical Society 5 , vol.36 , Issue.2 , pp. 111-147
    • Stone, M.1
  • 14
    • 0004183412 scopus 로고
    • Cross-Validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule
    • Techn. Report no. 477, Dept. of Statistics, Stanford University, May
    • B. Efron & R. Tibshirani, "Cross-Validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule," Techn. Report no. 477, Dept. of Statistics, Stanford University, May 1995. To appear in Journ. Amer. Statist.
    • (1995) Journ. Amer. Statist.
    • Efron, B.1    Tibshirani, R.2
  • 15
    • 0001572432 scopus 로고    scopus 로고
    • A Comparison of Some Error Estimates for Neural Network Models
    • R. Tibshirani, "A Comparison of Some Error Estimates for Neural Network Models," Neural Computation, vol. 8, pp. 152-163, 1996.
    • (1996) Neural Computation , vol.8 , pp. 152-163
    • Tibshirani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.