메뉴 건너뛰기




Volumn 44, Issue 10, 1997, Pages 873-875

The exponential stability of the invariant-norm PCA algorithm

Author keywords

Adaptive signal processing; Eigenvectors; Neural networks; Unsupervised learning

Indexed keywords

ALGORITHMS; CONVERGENCE OF NUMERICAL METHODS; CORRELATION METHODS; DIFFERENTIAL EQUATIONS; EIGENVALUES AND EIGENFUNCTIONS; LEARNING SYSTEMS; MATRIX ALGEBRA; NEURAL NETWORKS; VECTORS;

EID: 0031259372     PISSN: 10577130     EISSN: None     Source Type: Journal    
DOI: 10.1109/82.633449     Document Type: Article
Times cited : (3)

References (7)
  • 1
    • 0028272776 scopus 로고    scopus 로고
    • "Representation and separation of signals using nonlinear PCA type learning,"
    • vol. 7, 1994, pp. 113-128.
    • J. Karhunen and J. Joutsensalo, "Representation and separation of signals using nonlinear PCA type learning," Neural Networks, vol. 7, 1994, pp. 113-128.
    • Neural Networks
    • Karhunen, J.1    Joutsensalo, J.2
  • 4
    • 0017526570 scopus 로고    scopus 로고
    • "Analysis of recursive stochastic algorithms,"
    • 22, pp. 551-575, 1977.
    • L. Ljung, "Analysis of recursive stochastic algorithms," IEEE Trans. Automat. Contr., vol. AC-22, pp. 551-575, 1977.
    • IEEE Trans. Automat. Contr., Vol. AC
    • Ljung, L.1
  • 6
    • 0026745682 scopus 로고    scopus 로고
    • "Modified Hebbian learning for curve and surface fitting,"
    • vol. 5, 1992, pp. 441-4157.
    • L. Xu, E. Oja, and C. Y. Suen, "Modified Hebbian learning for curve and surface fitting," Neural Networks, vol. 5, 1992, pp. 441-4157.
    • Neural Networks
    • Xu, L.1    Oja, E.2    Suen, C.Y.3
  • 7
    • 0029004784 scopus 로고    scopus 로고
    • "A principal component analysis algorithm with invariant norm,"
    • vol. 8, 1995, pp. 213-221.
    • F.-L. Luo, R. Unbehauen, and Y.-D. Li, "A principal component analysis algorithm with invariant norm," Neurocomput., vol. 8, 1995, pp. 213-221.
    • Neurocomput.
    • Luo, F.-L.1    Unbehauen, R.2    Li, Y.-D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.