메뉴 건너뛰기




Volumn 33, Issue 10, 1997, Pages 1871-1875

A New Method for the Identification of Hammerstein Model

Author keywords

Identification; Neural nets; Nonlinear control systems; Process control; Recursive estimation; Time series analysis

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; MATHEMATICAL MODELS; NONLINEAR CONTROL SYSTEMS; PROCESS CONTROL; REGRESSION ANALYSIS; TIME SERIES ANALYSIS;

EID: 0031248950     PISSN: 00051098     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0005-1098(97)00105-2     Document Type: Article
Times cited : (83)

References (26)
  • 1
    • 0025747581 scopus 로고
    • Approximation theory and feedforward networks
    • Blum, E. K. and L. K. Li (1991). Approximation theory and feedforward networks. Neural Net, 4, 511-515.
    • (1991) Neural Net , vol.4 , pp. 511-515
    • Blum, E.K.1    Li, L.K.2
  • 2
    • 0015143385 scopus 로고
    • A noniterative method for identification using Hammerstein model
    • Chang, F. H. I. and R. Luus (1971). A noniterative method for identification using Hammerstein model. IEEE Trans. Automat. Control, AC-16, 464-468.
    • (1971) IEEE Trans. Automat. Control , vol.AC-16 , pp. 464-468
    • Chang, F.H.I.1    Luus, R.2
  • 3
    • 0016999191 scopus 로고
    • Cross-correlation function of a bandbass nonlinear network
    • DeBoer, E. (1976). Cross-correlation function of a bandbass nonlinear network. Proc. IEEE, 64, 1443-1446.
    • (1976) Proc. IEEE , vol.64 , pp. 1443-1446
    • DeBoer, E.1
  • 4
    • 0026111055 scopus 로고
    • Use of Hammerstein models in identification of nonlinear systems
    • Eskinat, E., S. H. Johnson and W. L. Luyben (1991). Use of Hammerstein models in identification of nonlinear systems. AICEJ, 37, 255-268.
    • (1991) AICEJ , vol.37 , pp. 255-268
    • Eskinat, E.1    Johnson, S.H.2    Luyben, W.L.3
  • 6
    • 0016634967 scopus 로고
    • An iterative method for the identification of nonlinear systems using Uryson model
    • Gallman, P. G. (1975). An iterative method for the identification of nonlinear systems using Uryson model. IEEE Trans. Automat. Control, AC-20, 771-775.
    • (1975) IEEE Trans. Automat. Control , vol.AC-20 , pp. 771-775
    • Gallman, P.G.1
  • 7
    • 0000965373 scopus 로고
    • A comparison of two Hammerstein model identification algorithms
    • Gallman, P. G. (1976). A comparison of two Hammerstein model identification algorithms. IEEE Trans. Automat. Control, 21, 124-126.
    • (1976) IEEE Trans. Automat. Control , vol.21 , pp. 124-126
    • Gallman, P.G.1
  • 8
    • 0022440372 scopus 로고
    • Identification of discrete Hammerstein systems using kernel regression estimates
    • Greblicki, W. and M. Pawlak (1986). Identification of discrete Hammerstein systems using kernel regression estimates. IEEE Trans. Automat. Control, AC-31, 74-77.
    • (1986) IEEE Trans. Automat. Control , vol.AC-31 , pp. 74-77
    • Greblicki, W.1    Pawlak, M.2
  • 9
    • 0024628999 scopus 로고
    • Nonparametric identification of Hammerstein systems
    • Greblicki, W. and M. Pawlak (1989). Nonparametric identification of Hammerstein systems. IEEE Trans. Inform. Theory, IT-35, 409-418.
    • (1989) IEEE Trans. Inform. Theory , vol.IT-35 , pp. 409-418
    • Greblicki, W.1    Pawlak, M.2
  • 10
    • 0011743299 scopus 로고
    • On optimal and suboptimal nonlinear filters for discrete inputs
    • Haddad, A. H. and J. B. Thomas (1968). On optimal and suboptimal nonlinear filters for discrete inputs. IEEE Trans. Inform. Theory, IT-14, 16-21.
    • (1968) IEEE Trans. Inform. Theory , vol.IT-14 , pp. 16-21
    • Haddad, A.H.1    Thomas, J.B.2
  • 11
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4, 251-257.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 12
    • 0022960073 scopus 로고
    • The identification of nonlinear biological systems: Wiener and Hammerstein cascade model
    • Hunter, I. W. and M. J. Korenberg (1986). The identification of nonlinear biological systems: Wiener and Hammerstein cascade model. Biolog. Cybernet., 55, 135-144.
    • (1986) Biolog. Cybernet. , vol.55 , pp. 135-144
    • Hunter, I.W.1    Korenberg, M.J.2
  • 14
    • 0025799121 scopus 로고
    • Representation of functions by superpositions of a step or sigmoid functions and their applications to neural network theory
    • Ito, Y. (1991). Representation of functions by superpositions of a step or sigmoid functions and their applications to neural network theory. Neural Networks, 4, 385-394.
    • (1991) Neural Networks , vol.4 , pp. 385-394
    • Ito, Y.1
  • 15
    • 0026222695 scopus 로고
    • Convergence of learning algorithms with constant learning rates
    • Kuan, C. and K. Hornik (1991). Convergence of learning algorithms with constant learning rates. IEEE Trans. Neural Networks, 2(5).
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.5
    • Kuan, C.1    Hornik, K.2
  • 16
    • 0021376039 scopus 로고
    • Discrete time adaptive control of linear dynamical systems with a two-segment piecewiselinear asymmetric nonlinearity
    • Kung, M. C. and B. F. Womack (1984). Discrete time adaptive control of linear dynamical systems with a two-segment piecewiselinear asymmetric nonlinearity. IEEE Trans. Automat. Control, AC-29, 170-173.
    • (1984) IEEE Trans. Automat. Control , vol.AC-29 , pp. 170-173
    • Kung, M.C.1    Womack, B.F.2
  • 19
    • 0022092234 scopus 로고
    • Performance of baseband digital transmission in nonlinear channel with memory
    • Maqusi, M. (1985). Performance of baseband digital transmission in nonlinear channel with memory. IEEE Trans. Commun., 33, 715-718.
    • (1985) IEEE Trans. Commun. , vol.33 , pp. 715-718
    • Maqusi, M.1
  • 21
    • 0015315837 scopus 로고
    • Detectors for discrete time signals in non-Gaussian noise
    • Miller, J. H. and J. B. Thomas (1972). Detectors for discrete time signals in non-Gaussian noise. IEEE Trans. Inform. Theory, IT-18, 241-250.
    • (1972) IEEE Trans. Inform. Theory , vol.IT-18 , pp. 241-250
    • Miller, J.H.1    Thomas, J.B.2
  • 22
    • 82055201757 scopus 로고
    • An iterative model for the identification of nonlinear systems using the Hammerstein model
    • Narenda, K. S. and P. G. Gallman (1966). An iterative model for the identification of nonlinear systems using the Hammerstein model. IEEE Trans. Automat. Control, AC-11, 546-550.
    • (1966) IEEE Trans. Automat. Control , vol.AC-11 , pp. 546-550
    • Narenda, K.S.1    Gallman, P.G.2
  • 23
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra, K. S. and K. Parthasarathy (1990). Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks, 1(1).
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1
    • Narendra, K.S.1    Parthasarathy, K.2
  • 24
    • 0028430459 scopus 로고
    • Analysis of back propagation learning algorithm with momentum
    • Phansalkar, V. V. and P. S. Sastry (1994). Analysis of back propagation learning algorithm with momentum. IEEE Trans. Neural Networks, 5(3).
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.3
    • Phansalkar, V.V.1    Sastry, P.S.2
  • 25
    • 0022010127 scopus 로고
    • Adaptive noise cancellation for a class of nonlinear systems
    • Stapleton, J. C. and S. C. Bass (1985). Adaptive noise cancellation for a class of nonlinear systems. IEEE Trans. Circuit Systems, CAS-32, 143-150.
    • (1985) IEEE Trans. Circuit Systems , vol.CAS-32 , pp. 143-150
    • Stapleton, J.C.1    Bass, S.C.2
  • 26
    • 0027662333 scopus 로고
    • Integration of multilayer perceptron networks and linear dynamic models: A Hammerstein modeling approch
    • Su, H. and T. J. McAvoy (1993). Integration of multilayer perceptron networks and linear dynamic models: A Hammerstein modeling approch. Ind. Eng. Chem. Res., 32, 1927-1936.
    • (1993) Ind. Eng. Chem. Res. , vol.32 , pp. 1927-1936
    • Su, H.1    McAvoy, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.