-
3
-
-
0003599913
-
-
Ramamurthy, V., Ed.; VCH: New York, Chapter 15
-
(c) Spooner, S. P.; Whitten, D. G. In Photochemistry in Organized and Constrained Media; Ramamurthy, V., Ed.; VCH: New York, 1991; Chapter 15.
-
(1991)
Photochemistry in Organized and Constrained Media
-
-
Spooner, S.P.1
Whitten, D.G.2
-
4
-
-
0021494641
-
-
(d) Mooney, W. F., III; Brown, P. E.; Russell, J. C.; Costa, S. B.; Pedersen, L. G.; Whitten, D. G. J. Am. Chem. Soc. 1984, 106, 5659.
-
(1984)
J. Am. Chem. Soc.
, vol.106
, pp. 5659
-
-
Mooney III, W.F.1
Brown, P.E.2
Russell, J.C.3
Costa, S.B.4
Pedersen, L.G.5
Whitten, D.G.6
-
8
-
-
0026108725
-
-
(h) Kajikawa, K.; Shirota, K.; Takezoe, H.; Fukuda, A. Jpn. J. Appl. Phys. 1991, 30, 362.
-
(1991)
Jpn. J. Appl. Phys.
, vol.30
, pp. 362
-
-
Kajikawa, K.1
Shirota, K.2
Takezoe, H.3
Fukuda, A.4
-
9
-
-
0009202582
-
-
(i) Shimomura, M.; Hashimoto, H.; Kunitake, T. Lungmuir 1989, 5, 174.
-
(1989)
Lungmuir
, vol.5
, pp. 174
-
-
Shimomura, M.1
Hashimoto, H.2
Kunitake, T.3
-
10
-
-
0001199719
-
-
(j) Hall, R. A.; Thistlethwaite, P. J.; Grieser, F.; Kimizuka, N.; Kunitake, T. J. Phys. Chem. 1993, 97, 11974.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 11974
-
-
Hall, R.A.1
Thistlethwaite, P.J.2
Grieser, F.3
Kimizuka, N.4
Kunitake, T.5
-
11
-
-
0343009815
-
-
(k) Kajikawa, K.; Anzai, T.; Shirota, K.; Takezoe, H.; Fukuda, A. Thin Solid Films 1992, 210/211, 699.
-
(1992)
Thin Solid Films
, vol.210-211
, pp. 699
-
-
Kajikawa, K.1
Anzai, T.2
Shirota, K.3
Takezoe, H.4
Fukuda, A.5
-
12
-
-
0028403975
-
-
(l) Furman, I.; Geiger, H. C.; Whitten, D. G.; Penner, T. L.; Ulman, A. Langmuir 1994, 10, 837.
-
(1994)
Langmuir
, vol.10
, pp. 837
-
-
Furman, I.1
Geiger, H.C.2
Whitten, D.G.3
Penner, T.L.4
Ulman, A.5
-
13
-
-
0005298330
-
-
(a) Tamai, N.; Matsuo, H.; Yamazaki, T.; Yamazaki, I. J. Phys. Chem. 1992, 96, 6550.
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 6550
-
-
Tamai, N.1
Matsuo, H.2
Yamazaki, T.3
Yamazaki, I.4
-
14
-
-
0039703574
-
-
(b) Spano, F. C.; Kuklinski, J. R.; Mukamel, S. J. Chem. Phys. 1991, 94, 7534.
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 7534
-
-
Spano, F.C.1
Kuklinski, J.R.2
Mukamel, S.3
-
15
-
-
33751553558
-
-
(c) Kemnitz, K.; Yoshihara, K.; Tani, T. J. Phys. Chem. 1990, 94, 3099.
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 3099
-
-
Kemnitz, K.1
Yoshihara, K.2
Tani, T.3
-
16
-
-
0002874756
-
-
(d) De Boer, S.; Vink, K. J.; Wiersma, D. A. Chem. Phys. Lett. 1987, 137, 99.
-
(1987)
Chem. Phys. Lett.
, vol.137
, pp. 99
-
-
De Boer, S.1
Vink, K.J.2
Wiersma, D.A.3
-
19
-
-
0001275833
-
-
(g) Fidder, H.; Knoester, J.; Wiersma, D. A. Chem. Phys. Lett. 1990, 171, 529.
-
(1990)
Chem. Phys. Lett.
, vol.171
, pp. 529
-
-
Fidder, H.1
Knoester, J.2
Wiersma, D.A.3
-
20
-
-
0000790641
-
-
(h) Spano, F. C.; Agranovich, V.; Mukamel, S. J. Chem. Phys. 1991, 95, 1400.
-
(1991)
J. Chem. Phys.
, vol.95
, pp. 1400
-
-
Spano, F.C.1
Agranovich, V.2
Mukamel, S.3
-
21
-
-
0042588895
-
-
(i) Spano, F. C.; Kuklinski, J. R.; Mukamel, S. Phys. Rev. Lett. 1990, 65, 211.
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 211
-
-
Spano, F.C.1
Kuklinski, J.R.2
Mukamel, S.3
-
22
-
-
36449006173
-
-
(j) Fidder, H.; Terpstra, J.; Wiersma, D. A. J. Chem. Phys. 1991, 94, 6895.
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 6895
-
-
Fidder, H.1
Terpstra, J.2
Wiersma, D.A.3
-
23
-
-
33751391848
-
-
(k) Tani, T.; Suzumoto, T.; Kemnitz, K.; Yoshihara, K. J. Phys. Chem. 1992, 96, 2778.
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 2778
-
-
Tani, T.1
Suzumoto, T.2
Kemnitz, K.3
Yoshihara, K.4
-
26
-
-
4244168084
-
-
(n) Sundstrom, V.; Gillbro, T.; Gadonas, R. A.; Piskarskas, A. J. Chem. Phys. 1988, 89, 2754.
-
(1988)
J. Chem. Phys.
, vol.89
, pp. 2754
-
-
Sundstrom, V.1
Gillbro, T.2
Gadonas, R.A.3
Piskarskas, A.4
-
28
-
-
0001509839
-
-
(b) Marowsky, G.; Chi, L. F.; Möbius, D.; Steinhoff, R.; Shen, Y. R.; Dorsch, D.; Rieger, B. Chem. Phys. Lett. 1988, 147, 420.
-
(1988)
Chem. Phys. Lett.
, vol.147
, pp. 420
-
-
Marowsky, G.1
Chi, L.F.2
Möbius, D.3
Steinhoff, R.4
Shen, Y.R.5
Dorsch, D.6
Rieger, B.7
-
29
-
-
0025432172
-
-
(c) Kajikawa, K.; Shirota, K.; Takezoe, H.; Fukuda, A. Jpn. J. Appl. Phys. 1990, 29, 913.
-
(1990)
Jpn. J. Appl. Phys.
, vol.29
, pp. 913
-
-
Kajikawa, K.1
Shirota, K.2
Takezoe, H.3
Fukuda, A.4
-
30
-
-
0025414123
-
-
(d) Shirota, K.; Kajikawa, K.; Takezoe, H.; Fukuda, A. Jpn. J. Appl. Phys. 1990, 29, 750.
-
(1990)
Jpn. J. Appl. Phys.
, vol.29
, pp. 750
-
-
Shirota, K.1
Kajikawa, K.2
Takezoe, H.3
Fukuda, A.4
-
31
-
-
0001725754
-
-
(e) Kakkar, A. K.; Yitzchaik, S.; Roscoe, S. B.; Kubota, F.; Allan, D. S.; Marks, T. J.; Lin, W.; Wong, G. K. Langmuir 1993, 9, 388.
-
(1993)
Langmuir
, vol.9
, pp. 388
-
-
Kakkar, A.K.1
Yitzchaik, S.2
Roscoe, S.B.3
Kubota, F.4
Allan, D.S.5
Marks, T.J.6
Lin, W.7
Wong, G.K.8
-
32
-
-
0028410511
-
-
(f) Lundquist, P. M.; Yitzchaik, S.; Zhang, T.; Kanis, D. R.; Ratner, M. A.; Marks, T. J.; Wong, G. K. Appl. Phys. Lett. 1994, 64, 2194.
-
(1994)
Appl. Phys. Lett.
, vol.64
, pp. 2194
-
-
Lundquist, P.M.1
Yitzchaik, S.2
Zhang, T.3
Kanis, D.R.4
Ratner, M.A.5
Marks, T.J.6
Wong, G.K.7
-
33
-
-
0002542956
-
-
(a) Czikklely, V.; Forsterling, H. D.; Kuhn, H. Chem. Phys. Lett. 1970, 6, 11.
-
(1970)
Chem. Phys. Lett.
, vol.6
, pp. 11
-
-
Czikklely, V.1
Forsterling, H.D.2
Kuhn, H.3
-
34
-
-
4243337946
-
-
(b) Czikklely, V.; Forsterling, H. D.; Kuhn, H. Chem. Phys. Lett. 1970, 6, 207.
-
(1970)
Chem. Phys. Lett.
, vol.6
, pp. 207
-
-
Czikklely, V.1
Forsterling, H.D.2
Kuhn, H.3
-
35
-
-
0343450524
-
-
(c) Nagamura, T.; Kamata, S. J. Photochem. Photobiol, A 1990, 55, 187.
-
(1990)
Photochem. Photobiol, A
, vol.55
, pp. 187
-
-
Nagamura, T.1
Kamata, S.J.2
-
36
-
-
33645044922
-
-
(d) Nakahara, H.; Fukuda, K.; Möbius, D.; Kuhn, H. J. Phys. Chem. 1986, 90, 6144.
-
(1986)
J. Phys. Chem.
, vol.90
, pp. 6144
-
-
Nakahara, H.1
Fukuda, K.2
Möbius, D.3
Kuhn, H.4
-
37
-
-
4243179758
-
-
note
-
The maximum monomer number density is inferred from the detection limit for absorption measurements in our monolayer spectrometer, which is ca. 0.005 monolayer of the strongly absorbing chromophore I. Residual monomer species show up strongly, however, in fluorescence excitation spectra.
-
-
-
-
38
-
-
0000078075
-
-
(a) Evans, C. E.; Song, Q.; Bohn, P. W. J. Phys. Chem. 1993, 97, 12302.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 12302
-
-
Evans, C.E.1
Song, Q.2
Bohn, P.W.3
-
39
-
-
0028483489
-
-
(b) Evans, C. E.; Song, Q.; Bohn, P. W. J. Colloid Interface Sci. 1994, 166, 95.
-
(1994)
J. Colloid Interface Sci.
, vol.166
, pp. 95
-
-
Evans, C.E.1
Song, Q.2
Bohn, P.W.3
-
40
-
-
0000245279
-
-
Mean molecular orientations were determined from an optical waveguide linear dichroism measurement of the transition dipole moment relative to the surface normal, as described in the following. (a) Cropek, D. M.; Bohn, P. W. J. Phys. Chem. 1990, 94, 6452. For the hemicyanines of interest in this work the transition dipole moment is aligned within 10° of the pseudorotation axis of the molecule as determined in the following.
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 6452
-
-
Cropek, D.M.1
Bohn, P.W.2
-
43
-
-
85088544730
-
-
note
-
-1. Furthermore, in ref 8 the fraction of cis isomer measured in the photostationary state ranged from 0.02 (methanol) to 0.04 (ethylene glycol) in alkanol solvents.
-
-
-
-
45
-
-
84962428703
-
-
(b) Marguet, S.; Mialocq, J. C.; Millie, P.; Berthier, G.; Momicchioli, F. Chem. Phys. 1992, 160, 265.
-
(1992)
Chem. Phys.
, vol.160
, pp. 265
-
-
Marguet, S.1
Mialocq, J.C.2
Millie, P.3
Berthier, G.4
Momicchioli, F.5
-
47
-
-
0000728861
-
-
Song, Q.; Evans, C. E.; Bohn, P. W. J. Phys. Chem. 1993, 97, 13736.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 13736
-
-
Song, Q.1
Evans, C.E.2
Bohn, P.W.3
-
48
-
-
0000655132
-
-
DeWitt, L.; Blanchard, G. J.; Benz, M.; LeGoff, E.; Liao, J.-H.; Kanatzidis, M. G. J. Am. Chem. Soc. 1993, 115, 12158.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 12158
-
-
DeWitt, L.1
Blanchard, G.J.2
Benz, M.3
LeGoff, E.4
Liao, J.-H.5
Kanatzidis, M.G.6
-
49
-
-
0027611013
-
-
Jiang, Y.; Hambir, S. A.; Blanchard, G. J. Opt. Commun. 1993, 99, 216.
-
(1993)
Opt. Commun.
, vol.99
, pp. 216
-
-
Jiang, Y.1
Hambir, S.A.2
Blanchard, G.J.3
-
50
-
-
85088542838
-
-
note
-
2 is ∼0.18 and for cyanines it is ∼0.09. Exact values are not strictly available, since the rate constants are temperature and environment dependent, and they are not available in the literature for the conditions of our experiment.
-
-
-
-
53
-
-
0002559525
-
-
Hicks, J.; Vandersall, M.; Babarogic, Z.; Eisenthal, K. Chem. Phys. Lett. 1985, 116, 18.
-
(1985)
Chem. Phys. Lett.
, vol.116
, pp. 18
-
-
Hicks, J.1
Vandersall, M.2
Babarogic, Z.3
Eisenthal, K.4
-
57
-
-
0000205651
-
-
Rothenberger, G.; Negus, D. K.; Hochstrasser, R. M. J. Chem. Phys. 1983, 79, 5360.
-
(1983)
J. Chem. Phys.
, vol.79
, pp. 5360
-
-
Rothenberger, G.1
Negus, D.K.2
Hochstrasser, R.M.3
-
58
-
-
0028766088
-
-
Song, Q.; Xu, Z., Lu, W.; Bohn, P. W. Colloid Surf. 1994, 93, 73.
-
(1994)
Colloid Surf.
, vol.93
, pp. 73
-
-
Song, Q.1
Xu, Z.2
Lu, W.3
Bohn, P.W.4
-
59
-
-
4243141126
-
-
The detection limit of our monolayer absorption measurements at 480 nm is ca. 0.005 monolayer, and no absorption ascribable to the monomer is detected, so the monomer concentration may in fact be much lower; i.e., 0.5% represents an upper limit for the monomer concentration
-
The detection limit of our monolayer absorption measurements at 480 nm is ca. 0.005 monolayer, and no absorption ascribable to the monomer is detected, so the monomer concentration may in fact be much lower; i.e., 0.5% represents an upper limit for the monomer concentration.
-
-
-
-
60
-
-
0004012728
-
-
Weissberger, A., Rossiter, B. W., Eds.; John Wiley & Sons, Inc.: New York
-
(a) Kuhn, H.; Möbius, D.; Bücher, H. Physical Methods of Chemistry; Weissberger, A., Rossiter, B. W., Eds.; John Wiley & Sons, Inc.: New York, 1972.
-
(1972)
Physical Methods of Chemistry
-
-
Kuhn, H.1
Möbius, D.2
Bücher, H.3
-
62
-
-
4243070169
-
-
note
-
The boundary sites were identified as those sites not fully coordinated. The initial exciton position was chosen randomly. If the site selected was not one of the boundary sites, the exciton was allowed to take discrete steps (hops) until it reached a boundary site, at which point the run was terminated and the number of hops summed. When the number of runs (excitons generated) became very large, the calculated 〈n〉 became constant. The 〈n〉 calculated represents the mean number of hops needed for an exciton to reach the boundary of an aggregate island. Since the population of monomer is rather small (≤0.5% of the total population), not all the boundary sites are in the vicinity of a monomer. To take this fact into account, the product of the ratio of boundary sites per monomer and 〈n〉 was used to obtain the mean number of hops before excitation transfer.
-
-
-
-
65
-
-
0001272468
-
-
Muenter, A. A.; Brumbaugh, D. V.; Apolito, J.; Horn, L. A.; Spano, F. C.; Mukamel, S. J. Phys. Chem. 1992, 96, 2783.
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 2783
-
-
Muenter, A.A.1
Brumbaugh, D.V.2
Apolito, J.3
Horn, L.A.4
Spano, F.C.5
Mukamel, S.6
|