-
8
-
-
0028480617
-
-
F. Garwe, A. Schönhals, M. Beiner, K. Schröter, and E. Donth, J. Phys., Condens. Matter 6, 6941 (1994).
-
(1994)
J. Phys., Condens. Matter
, vol.6
, pp. 6941
-
-
Garwe, F.1
Schönhals, A.2
Beiner, M.3
Schröter, K.4
Donth, E.5
-
9
-
-
0030263856
-
-
A. Arbe, D. Richter, J. Colmenero, and B. Farago, Phys. Rev. E 54, 3853 (1996).
-
(1996)
Phys. Rev. E
, vol.54
, pp. 3853
-
-
Arbe, A.1
Richter, D.2
Colmenero, J.3
Farago, B.4
-
10
-
-
0029635773
-
-
R. Zorn, G. B. McKenna, L. Willner, and D. Richter, Macromolecules 28, 8552 (1995).
-
(1995)
Macromolecules
, vol.28
, pp. 8552
-
-
Zorn, R.1
McKenna, G.B.2
Willner, L.3
Richter, D.4
-
16
-
-
85033324683
-
-
note
-
The absolute values of ∈″ obtained here for PB 7 are ≈26% higher than those published by Quan et al. (Ref. 17) for 11% 1,2-polybutadiene at 1 kHz and ≈31% higher than those published by Hofmann et al. (Ref. 18) for a 7% 1,2-polybutadiene at -92.1 °C.
-
-
-
-
17
-
-
0024663356
-
-
X. Quan, G. E. Johnson, E. W. Anderson, and F. S. Bates, Macromolecules 22, 2451 (1989).
-
(1989)
Macromolecules
, vol.22
, pp. 2451
-
-
Quan, X.1
Johnson, G.E.2
Anderson, E.W.3
Bates, F.S.4
-
18
-
-
0000080574
-
-
A. Hofmann, A. Alegria, J. Colmenero, and L. Willner, Macromolecules 29, 129 (1996).
-
(1996)
Macromolecules
, vol.29
, pp. 129
-
-
Hofmann, A.1
Alegria, A.2
Colmenero, J.3
Willner, L.4
-
19
-
-
5944253564
-
-
Electrically Based Microstructural Characterization, edited by R. A. Gerhard, S. A. Taylor, and E. J. Garboczi
-
F. I. Mopsik, in Electrically Based Microstructural Characterization, edited by R. A. Gerhard, S. A. Taylor, and E. J. Garboczi [Mater. Res. Soc. Symp. Proc. 147, 357 (1996)].
-
(1996)
Mater. Res. Soc. Symp. Proc.
, vol.147
, pp. 357
-
-
Mopsik, F.I.1
-
21
-
-
3743073367
-
-
P. K. Dixon, L. Wu, S. R. Nagel, B. D. Williams, and J. P. Carini, Phys. Rev. Lett. 65, 1108 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 1108
-
-
Dixon, P.K.1
Wu, L.2
Nagel, S.R.3
Williams, B.D.4
Carini, J.P.5
-
24
-
-
2742543702
-
-
F. S. Howell, H. A. Bose, P. B. Macedo, and C. T. Moyniham, J. Chem. Phys. 78, 639 (1974).
-
(1974)
J. Chem. Phys.
, vol.78
, pp. 639
-
-
Howell, F.S.1
Bose, H.A.2
Macedo, P.B.3
Moyniham, C.T.4
-
25
-
-
85033279535
-
-
note
-
Deviations from thermorheological simplicity were only detected when glassy and terminal dispersion shift factors were compared. Each of the dispersions individually followed the time-temperature superposition principle.
-
-
-
-
28
-
-
85033284135
-
-
note
-
An estimate of the systematic error which results from doing this can be obtained by extrapolation of the mismatch between glassy and terminal shift factors in the overlap region reported in Ref. 10 to the highest temperature used here. For PB 7 through PB 70 we expect errors less than a factor of 2, i.e., 0.3 offset on the logarithmic scales of Figs. 11 and 12. Only in the case of PB 95 the factor may rise to about 15, i.e., an offset of 1.2 on the logarithmic scales, for the highest temperature because there the observed mismatch was much larger than for the other microstructures.
-
-
-
-
30
-
-
58749112390
-
-
C. T. Moynihan, N. Balitactac, L. Boone, and T. A. Litovitz, J. Chem. Phys. 55, 3013 (1971).
-
(1971)
J. Chem. Phys.
, vol.55
, pp. 3013
-
-
Moynihan, C.T.1
Balitactac, N.2
Boone, L.3
Litovitz, T.A.4
-
33
-
-
85033278238
-
-
note
-
Among the other models reported only the one of Havriliak and Havriliak (HH) (Refs. 34 and 35) seems to be sufficiently elaborate to accommodate the complicated situation of polymer viscoelasticity. The HH model needs the tensile creep compliance D(t) as an input of rheological data. The conversion of the rheological data in Ref. 10 would require a transform into the time domain. Because of the complication and numerical uncertainty involved with this we did not test the HN model. Additionally, we point out that Havriliak and Havriliak (Ref. 31) showed that the results of their model and the DB model are very similar despite their different derivations.
-
-
-
|