-
1
-
-
0346372923
-
The infinite number of generalized dimensions of fractals and strange attractors
-
H. G. E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Physica D 8, 435 (1983).
-
(1983)
Physica D
, vol.8
, pp. 435
-
-
Hentschel, H.G.E.1
Procaccia, I.2
-
3
-
-
4243927478
-
Multifractal analysis of imprecise data: Badii-Politi and correlation integral approaches
-
L. V. Meisel and M. Johnson, Multifractal analysis of imprecise data: Badii-Politi and correlation integral approaches, Phys. Rev. E 50(5), 4214-4219 (1994).
-
(1994)
Phys. Rev. E
, vol.50
, Issue.5
, pp. 4214-4219
-
-
Meisel, L.V.1
Johnson, M.2
-
4
-
-
40749093037
-
Measuring the strangeness of strange attractors
-
P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica D 9, 189 (1983).
-
(1983)
Physica D
, vol.9
, pp. 189
-
-
Grassberger, P.1
Procaccia, I.2
-
5
-
-
51249180348
-
Characterization of strange attractors as inhomogeneous fractals
-
G. Paladin and A. Vulpiano, Characterization of strange attractors as inhomogeneous fractals, Lett. Nuovo Cimento 41, 82 (1984).
-
(1984)
Lett. Nuovo Cimento
, vol.41
, pp. 82
-
-
Paladin, G.1
Vulpiano, A.2
-
6
-
-
4243245982
-
Generalized dimensions and entropies from a measured time series
-
K. Pawelzik and H. G. Schuster, Generalized dimensions and entropies from a measured time series, Phys. Rev. A 35, 481 (1987).
-
(1987)
Phys. Rev. A
, vol.35
, pp. 481
-
-
Pawelzik, K.1
Schuster, H.G.2
-
8
-
-
0001463465
-
Statistical description of chaotic attractors: The dimension function
-
R. Badii and A. Politi, Statistical description of chaotic attractors: The dimension function, J. Stat. Phys. 40, 725 (1985).
-
(1985)
J. Stat. Phys.
, vol.40
, pp. 725
-
-
Badii, R.1
Politi, A.2
-
9
-
-
0043035345
-
Practical considerations in estimating dimension from time series data
-
E. J. Kostelich and H. L. Swinney, Practical considerations in estimating dimension from time series data, Physica Scripta 40, 436 (1989).
-
(1989)
Physica Scripta
, vol.40
, pp. 436
-
-
Kostelich, E.J.1
Swinney, H.L.2
-
10
-
-
0040417803
-
Evaluations of dimensions and entropies of chaotic systems
-
G. Broggi, Evaluations of dimensions and entropies of chaotic systems, J. Opt. Soc. Am. B 5, 1020 (1988).
-
(1988)
J. Opt. Soc. Am. B
, vol.5
, pp. 1020
-
-
Broggi, G.1
-
11
-
-
84975542820
-
Dimension analysis of a chaotic nuclear magnetic resonance laser
-
M. Ravani, B. Derighetti, G. Broggi and E. Brun, Dimension analysis of a chaotic nuclear magnetic resonance laser, J. Opt. Soc. Am. B 5, 1029 (1988).
-
(1988)
J. Opt. Soc. Am. B
, vol.5
, pp. 1029
-
-
Ravani, M.1
Derighetti, B.2
Broggi, G.3
Brun, E.4
-
12
-
-
0000498214
-
Efficient box-counting determination of generalized fractal dimensions
-
A. Block, W. von Bloh and H. J. Schellnhuber, Efficient box-counting determination of generalized fractal dimensions, Phys. Rev. A 42, 1869 (1990).
-
(1990)
Phys. Rev. A
, vol.42
, pp. 1869
-
-
Block, A.1
Von Bloh, W.2
Schellnhuber, H.J.3
-
13
-
-
0002917936
-
An efficient algorithm for fast 0(N*ln (N)) box counting
-
X. J. Hou, R. G. Gilmore, G. B. Mindlin and H. G. Solari, An efficient algorithm for fast 0(N*ln (N)) box counting, Phys. Lett. A 151, 43 (1990).
-
(1990)
Phys. Lett. A
, vol.151
, pp. 43
-
-
Hou, X.J.1
Gilmore, R.G.2
Mindlin, G.B.3
Solari, H.G.4
-
14
-
-
0001194019
-
Global universality at the onset of chaos: Results of a forced Rayleigh-Benard experiment
-
M. H. Jensen, L. P. Kadanoff, A. Libchaber, I. Procaccia and J. Stavans, Global universality at the onset of chaos: Results of a forced Rayleigh-Benard experiment, Phys. Rev. Lett. 55, 2798 (1985).
-
(1985)
Phys. Rev. Lett.
, vol.55
, pp. 2798
-
-
Jensen, M.H.1
Kadanoff, L.P.2
Libchaber, A.3
Procaccia, I.4
Stavans, J.5
-
15
-
-
0000442068
-
A fast algorithm to determine fractal dimensions by box-counting
-
L. S. Liebovitch and T. Toth, A fast algorithm to determine fractal dimensions by box-counting, Phys. Lett. A 141, 386 (1989).
-
(1989)
Phys. Lett. A
, vol.141
, pp. 386
-
-
Liebovitch, L.S.1
Toth, T.2
-
16
-
-
3342916075
-
Fractal measures and their singularities: The characterization of strange sets
-
T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. I. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33, 1141 (1986).
-
(1986)
Phys. Rev. A
, vol.33
, pp. 1141
-
-
Halsey, T.C.1
Jensen, M.H.2
Kadanoff, L.P.3
Procaccia, I.4
Shraiman, B.I.5
-
18
-
-
0028391786
-
Can the fractal dimension of images be measured?
-
Qian Huang, J. R. Lorch and R. C. Dubes, Can the fractal dimension of images be measured?. Pattern Recognition 27, 339 (1994).
-
(1994)
Pattern Recognition
, vol.27
, pp. 339
-
-
Huang, Q.1
Lorch, J.R.2
Dubes, R.C.3
-
19
-
-
0001501756
-
Evaluating the fractal dimension of surfaces
-
B. Dubuc, S. W. Zucker, C. Tricott, J. F. Quiniou and D. Wehbi, Evaluating the fractal dimension of surfaces, Proc. R. Soc. London A 425, 113 (1989).
-
(1989)
Proc. R. Soc. London A
, vol.425
, pp. 113
-
-
Dubuc, B.1
Zucker, S.W.2
Tricott, C.3
Quiniou, J.F.4
Wehbi, D.5
-
21
-
-
0004263139
-
-
Freeman, New York Koch symmetric flake: p. 34. Koch asymmetric flake: p. 56. 13 element construction: p. 69. Split snowflake halls: p. 146.
-
B. B. Mandelbrot, Fractal Geometry of Nature. Freeman, New York (1983). [Koch symmetric flake: p. 34. Koch asymmetric flake: p. 56. 13 element construction: p. 69. Split snowflake halls: p. 146.].
-
(1983)
Fractal Geometry of Nature
-
-
Mandelbrot, B.B.1
-
23
-
-
48749145669
-
The dimension of chaotic attractors
-
J. D. Farmer, E. Ott and J. A. Yorke, The dimension of chaotic attractors, Physica D 7, 153 (1983).
-
(1983)
Physica D
, vol.7
, pp. 153
-
-
Farmer, J.D.1
Ott, E.2
Yorke, J.A.3
-
24
-
-
22244456151
-
Strange attractors in weakly turbulent Couette-Taylor flow
-
A. Brandstater and H. L. Swinney, Strange attractors in weakly turbulent Couette-Taylor flow, Phys. Rev. A 35, 2207 (1987).
-
(1987)
Phys. Rev. A
, vol.35
, pp. 2207
-
-
Brandstater, A.1
Swinney, H.L.2
|