-
1
-
-
23544453757
-
New variables for classical and quantum gravity
-
[1] A. Ashtekar, New variables for classical and quantum gravity, Phys. Rev. Lett. 57 (1986) 2244; A new Hamiltonian formulation of general relativity, Phys. Rev. D 36 (1987) 1587.
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 2244
-
-
Ashtekar, A.1
-
2
-
-
33644584965
-
A new Hamiltonian formulation of general relativity
-
[1] A. Ashtekar, New variables for classical and quantum gravity, Phys. Rev. Lett. 57 (1986) 2244; A new Hamiltonian formulation of general relativity, Phys. Rev. D 36 (1987) 1587.
-
(1987)
Phys. Rev. D
, vol.36
, pp. 1587
-
-
-
3
-
-
0010954184
-
Polynomial constraints for general relativity using real geometrodynamical variables
-
[2] R.S. Tate, Polynomial constraints for general relativity using real geometrodynamical variables, Class. Quant. Grav. 9 (1992) 101.
-
(1992)
Class. Quant. Grav.
, vol.9
, pp. 101
-
-
Tate, R.S.1
-
4
-
-
13344250498
-
Loop space representation of quantum general relativity
-
[3] C. Rovelli and L. Smolin, Loop space representation of quantum general relativity, Nucl. Phys. B 331 (1990) 80.
-
(1990)
Nucl. Phys. B
, vol.331
, pp. 80
-
-
Rovelli, C.1
Smolin, L.2
-
5
-
-
0003411831
-
-
ed. J. Ehlers and H. Friedrich Springer, Berlin
-
[4] Articles by B. Brügmann, R. Loll, T. Thiemann and A. Ashtekar, in Canonical gravity: from classical to quantum, ed. J. Ehlers and H. Friedrich (Springer, Berlin, 1994); R. Loll, Still on the way to quantizing gravity, to appear in Proc. 12th Italian Conf. on General Relativity and Gravitational Physics, Rome, Italy, 23-27 September 1996.
-
(1994)
Canonical Gravity: from Classical to Quantum
-
-
Brügmann, B.1
Loll, R.2
Thiemann, T.3
Ashtekar, A.4
-
6
-
-
0010951283
-
Still on the way to quantizing gravity
-
Rome, Italy, 23-27 September
-
[4] Articles by B. Brügmann, R. Loll, T. Thiemann and A. Ashtekar, in Canonical gravity: from classical to quantum, ed. J. Ehlers and H. Friedrich (Springer, Berlin, 1994); R. Loll, Still on the way to quantizing gravity, to appear in Proc. 12th Italian Conf. on General Relativity and Gravitational Physics, Rome, Italy, 23-27 September 1996.
-
(1996)
Proc. 12th Italian Conf. on General Relativity and Gravitational Physics
-
-
Loll, R.1
-
7
-
-
0000182313
-
A lattice approach to spinorial quantum gravity
-
[5] P. Renteln and L. Smolin, A lattice approach to spinorial quantum gravity, Class. Quant. Grav. 6 (1989) 275; P. Renteln, Some results of SU(2) spinorial lattice gravity, Class. Quant. Grav. 7 (1990) 493; O. Boström, M. Miller and L. Smolin, A new discretization of classical and quantum general relativity, Syracuse U. preprint SU-GP-93-4-1; R. Loll, Non-perturbative solutions for lattice quantum gravity, Nucl. Phys. B 444 (1995) 619; K. Ezawa, Multi-plaquette solutions for discretized Ashtekar gravity, Mod. Phys. Lett. A 11 (1996) 2921; H. Fort, R. Gambini and J. Pullin, Lattice knot theory and quantum gravity in the loop representation, to appear in Phys. Rev. D.
-
(1989)
Class. Quant. Grav.
, vol.6
, pp. 275
-
-
Renteln, P.1
Smolin, L.2
-
8
-
-
0001188730
-
Some results of SU(2) spinorial lattice gravity
-
[5] P. Renteln and L. Smolin, A lattice approach to spinorial quantum gravity, Class. Quant. Grav. 6 (1989) 275; P. Renteln, Some results of SU(2) spinorial lattice gravity, Class. Quant. Grav. 7 (1990) 493; O. Boström, M. Miller and L. Smolin, A new discretization of classical and quantum general relativity, Syracuse U. preprint SU-GP-93-4-1; R. Loll, Non-perturbative solutions for lattice quantum gravity, Nucl. Phys. B 444 (1995) 619; K. Ezawa, Multi-plaquette solutions for discretized Ashtekar gravity, Mod. Phys. Lett. A 11 (1996) 2921; H. Fort, R. Gambini and J. Pullin, Lattice knot theory and quantum gravity in the loop representation, to appear in Phys. Rev. D.
-
(1990)
Class. Quant. Grav.
, vol.7
, pp. 493
-
-
Renteln, P.1
-
9
-
-
0000182313
-
A new discretization of classical and quantum general relativity
-
preprint SU-GP-93-4-1
-
[5] P. Renteln and L. Smolin, A lattice approach to spinorial quantum gravity, Class. Quant. Grav. 6 (1989) 275; P. Renteln, Some results of SU(2) spinorial lattice gravity, Class. Quant. Grav. 7 (1990) 493; O. Boström, M. Miller and L. Smolin, A new discretization of classical and quantum general relativity, Syracuse U. preprint SU-GP-93-4-1; R. Loll, Non-perturbative solutions for lattice quantum gravity, Nucl. Phys. B 444 (1995) 619; K. Ezawa, Multi-plaquette solutions for discretized Ashtekar gravity, Mod. Phys. Lett. A 11 (1996) 2921; H. Fort, R. Gambini and J. Pullin, Lattice knot theory and quantum gravity in the loop representation, to appear in Phys. Rev. D.
-
Syracuse U.
-
-
Boström, O.1
Miller, M.2
Smolin, L.3
-
10
-
-
4243602858
-
Non-perturbative solutions for lattice quantum gravity
-
[5] P. Renteln and L. Smolin, A lattice approach to spinorial quantum gravity, Class. Quant. Grav. 6 (1989) 275; P. Renteln, Some results of SU(2) spinorial lattice gravity, Class. Quant. Grav. 7 (1990) 493; O. Boström, M. Miller and L. Smolin, A new discretization of classical and quantum general relativity, Syracuse U. preprint SU-GP-93-4-1; R. Loll, Non-perturbative solutions for lattice quantum gravity, Nucl. Phys. B 444 (1995) 619; K. Ezawa, Multi-plaquette solutions for discretized Ashtekar gravity, Mod. Phys. Lett. A 11 (1996) 2921; H. Fort, R. Gambini and J. Pullin, Lattice knot theory and quantum gravity in the loop representation, to appear in Phys. Rev. D.
-
(1995)
Nucl. Phys. B
, vol.444
, pp. 619
-
-
Loll, R.1
-
11
-
-
0001361336
-
Multi-plaquette solutions for discretized Ashtekar gravity
-
[5] P. Renteln and L. Smolin, A lattice approach to spinorial quantum gravity, Class. Quant. Grav. 6 (1989) 275; P. Renteln, Some results of SU(2) spinorial lattice gravity, Class. Quant. Grav. 7 (1990) 493; O. Boström, M. Miller and L. Smolin, A new discretization of classical and quantum general relativity, Syracuse U. preprint SU-GP-93-4-1; R. Loll, Non-perturbative solutions for lattice quantum gravity, Nucl. Phys. B 444 (1995) 619; K. Ezawa, Multi-plaquette solutions for discretized Ashtekar gravity, Mod. Phys. Lett. A 11 (1996) 2921; H. Fort, R. Gambini and J. Pullin, Lattice knot theory and quantum gravity in the loop representation, to appear in Phys. Rev. D.
-
(1996)
Mod. Phys. Lett. A
, vol.11
, pp. 2921
-
-
Ezawa, K.1
-
12
-
-
0000390311
-
Lattice knot theory and quantum gravity in the loop representation
-
[5] P. Renteln and L. Smolin, A lattice approach to spinorial quantum gravity, Class. Quant. Grav. 6 (1989) 275; P. Renteln, Some results of SU(2) spinorial lattice gravity, Class. Quant. Grav. 7 (1990) 493; O. Boström, M. Miller and L. Smolin, A new discretization of classical and quantum general relativity, Syracuse U. preprint SU-GP-93-4-1; R. Loll, Non-perturbative solutions for lattice quantum gravity, Nucl. Phys. B 444 (1995) 619; K. Ezawa, Multi-plaquette solutions for discretized Ashtekar gravity, Mod. Phys. Lett. A 11 (1996) 2921; H. Fort, R. Gambini and J. Pullin, Lattice knot theory and quantum gravity in the loop representation, to appear in Phys. Rev. D.
-
Phys. Rev. D.
-
-
Fort, H.1
Gambini, R.2
Pullin, J.3
-
13
-
-
22144440004
-
Real ashtekar variables for Lorentzian signature space-times
-
[6] J.F. Barbero G., Real Ashtekar variables for Lorentzian signature space-times, Phys. Rev. D 51 (1995) 5507.
-
(1995)
Phys. Rev. D
, vol.51
, pp. 5507
-
-
Barbero G., J.F.1
-
14
-
-
4243630060
-
The volume operator in discretized quantum gravity
-
[7] R. Loll, The volume operator in discretized quantum gravity, Phys. Rev. Lett. 75 (1995) 3048.
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 3048
-
-
Loll, R.1
-
15
-
-
0030605302
-
Spectrum of the volume operator in quantum gravity
-
[8] R. Loll, Spectrum of the volume operator in quantum gravity, Nucl. Phys. B 460 (1996) 143.
-
(1996)
Nucl. Phys. B
, vol.460
, pp. 143
-
-
Loll, R.1
-
16
-
-
0011001429
-
Recent developments in non-perturbative quantum gravity
-
World Scientific, Singapore
-
[9] L. Smolin, Recent developments in non-perturbative quantum gravity, in Quantum gravity and cosmology (World Scientific, Singapore, 1992) p. 3.
-
(1992)
Quantum Gravity and Cosmology
, pp. 3
-
-
Smolin, L.1
-
17
-
-
0007020922
-
Discreteness of area and volume in quantum gravity
-
[10] C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity, Nucl. Phys. B 442 (1995) 593; B 456 (1995) 753 (E).
-
(1995)
Nucl. Phys. B
, vol.442
, pp. 593
-
-
Rovelli, C.1
Smolin, L.2
-
18
-
-
33646624346
-
-
E
-
[10] C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity, Nucl. Phys. B 442 (1995) 593; B 456 (1995) 753 (E).
-
(1995)
Nucl. Phys. B
, vol.456
, pp. 753
-
-
-
19
-
-
2742537895
-
Geometry eigenvalues and scalar product from recoupling theory in loop quantum gravity
-
[11] R. De Pietri and C. Rovelli, Geometry eigenvalues and scalar product from recoupling theory in loop quantum gravity, Phys. Rev. D 54 (1996) 2664.
-
(1996)
Phys. Rev. D
, vol.54
, pp. 2664
-
-
De Pietri, R.1
Rovelli, C.2
-
20
-
-
1542552153
-
Differential geometry on the spaces of connections via graphs and projective limits
-
[12] A. Ashtekar and J. Lewandowski, Differential geometry on the spaces of connections via graphs and projective limits, J. Geom. Phys. 17 (1995) 191.
-
(1995)
J. Geom. Phys.
, vol.17
, pp. 191
-
-
Ashtekar, A.1
Lewandowski, J.2
-
21
-
-
0031542623
-
Volume and quantizations
-
[13] J. Lewandowski, Volume and quantizations, Class. Quant. Grav. 15 (1997) 71.
-
(1997)
Class. Quant. Grav.
, vol.15
, pp. 71
-
-
Lewandowski, J.1
-
22
-
-
0010953958
-
Closed formula for the matrix elements of the volume operator in canonical quantum gravity
-
Harvard U. preprint
-
[14] T. Thiemann, Closed formula for the matrix elements of the volume operator in canonical quantum gravity, Harvard U. preprint HUTMP-96/B-353.
-
HUTMP-96/B-353
-
-
Thiemann, T.1
-
23
-
-
0000855638
-
A real alternative to quantum gravity in loop space
-
[15] R. Loll, A real alternative to quantum gravity in loop space, Phys. Rev. D 54 (1996) 5381.
-
(1996)
Phys. Rev. D
, vol.54
, pp. 5381
-
-
Loll, R.1
-
24
-
-
0000856078
-
Anomaly free formulation of non-perturbative four-dimensional Lorentzian quantum gravity
-
[16] T. Thiemann, Anomaly free formulation of non-perturbative four-dimensional Lorentzian quantum gravity, Phys. Lett. B 380 (1996) 257; Quantum spin dynamics I & II, Harvard U. preprints HUTMP-96/B-351 and B-352.
-
(1996)
Phys. Lett. B
, vol.380
, pp. 257
-
-
Thiemann, T.1
-
25
-
-
85136579694
-
Quantum spin dynamics I & II
-
Harvard U. preprints
-
[16] T. Thiemann, Anomaly free formulation of non-perturbative four-dimensional Lorentzian quantum gravity, Phys. Lett. B 380 (1996) 257; Quantum spin dynamics I & II, Harvard U. preprints HUTMP-96/B-351 and B-352.
-
HUTMP-96/B-351 and B-352
-
-
-
26
-
-
0000677750
-
Imposing det E > 0 in discrete quantum gravity
-
[17] R. Loll, Imposing det E > 0 in discrete quantum gravity, Phys. Lett. B 399 (1997) 227.
-
(1997)
Phys. Lett. B
, vol.399
, pp. 227
-
-
Loll, R.1
-
27
-
-
0010950605
-
Instability and absence of long-ranged correlations in non-perturbative quantum general relativity
-
Penn State U. preprint
-
[18] L. Smolin, Instability and absence of long-ranged correlations in non-perturbative quantum general relativity, Penn State U. preprint CGPG-96/9-4.
-
CGPG-96/9-4
-
-
Smolin, L.1
-
28
-
-
33744572565
-
Spin networks and quantum gravity
-
[19] C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev. D 52 (1995) 5743; J.B. Baez, Spin network states in gauge theory, Adv. Math. 117 (1996) 253; Spin networks and non-perturbative quantum gravity, in The interface of knots and physics, ed. L. Kauffman, American Mathematical Society, Providence, 1996; L. Smolin, The future of spin networks, Penn State U. preprint CGPG-97.
-
(1995)
Phys. Rev. D
, vol.52
, pp. 5743
-
-
Rovelli, C.1
Smolin, L.2
-
29
-
-
0030577671
-
Spin network states in gauge theory
-
[19] C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev. D 52 (1995) 5743; J.B. Baez, Spin network states in gauge theory, Adv. Math. 117 (1996) 253; Spin networks and non-perturbative quantum gravity, in The interface of knots and physics, ed. L. Kauffman, American Mathematical Society, Providence, 1996; L. Smolin, The future of spin networks, Penn State U. preprint CGPG-97.
-
(1996)
Adv. Math.
, vol.117
, pp. 253
-
-
Baez, J.B.1
-
30
-
-
33744572565
-
Spin networks and non-perturbative quantum gravity
-
ed. L. Kauffman, American Mathematical Society, Providence
-
[19] C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev. D 52 (1995) 5743; J.B. Baez, Spin network states in gauge theory, Adv. Math. 117 (1996) 253; Spin networks and non-perturbative quantum gravity, in The interface of knots and physics, ed. L. Kauffman, American Mathematical Society, Providence, 1996; L. Smolin, The future of spin networks, Penn State U. preprint CGPG-97.
-
(1996)
The Interface of Knots and Physics
-
-
-
31
-
-
33744572565
-
The future of spin networks
-
Penn State U. preprint
-
[19] C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev. D 52 (1995) 5743; J.B. Baez, Spin network states in gauge theory, Adv. Math. 117 (1996) 253; Spin networks and non-perturbative quantum gravity, in The interface of knots and physics, ed. L. Kauffman, American Mathematical Society, Providence, 1996; L. Smolin, The future of spin networks, Penn State U. preprint CGPG-97.
-
CGPG-97
-
-
Smolin, L.1
-
32
-
-
0031487008
-
Further results on geometric operators in quantum gravity
-
[20] R. Loll, Further results on geometric operators in quantum gravity, Class. Quant. Grav. 14 (1997) 1725.
-
(1997)
Class. Quant. Grav.
, vol.14
, pp. 1725
-
-
Loll, R.1
-
33
-
-
0004203287
-
-
North-Holland, Amsterdam
-
[21] T. Janssen, Crystallographic groups (North-Holland, Amsterdam, 1973); S.L. Altmann, in Quantum Theory II, ed. D.R. Bates (Academic Press, New York, 1962).
-
(1973)
Crystallographic Groups
-
-
Janssen, T.1
-
34
-
-
0011021768
-
-
ed. D.R. Bates Academic Press, New York
-
[21] T. Janssen, Crystallographic groups (North-Holland, Amsterdam, 1973); S.L. Altmann, in Quantum Theory II, ed. D.R. Bates (Academic Press, New York, 1962).
-
(1962)
Quantum Theory II
-
-
Altmann, S.L.1
-
35
-
-
33744541191
-
Hamiltonian formulation of Wilson's lattice gauge theories
-
[22] J. Kogut and L. Susskind, Hamiltonian formulation of Wilson's lattice gauge theories, Phys. Rev. D 11 (1975) 395; J.B. Kogut, The lattice gauge theory approach to quantum chromodynamics, Rev. Mod. Phys. 55 (1983) 775.
-
(1975)
Phys. Rev. D
, vol.11
, pp. 395
-
-
Kogut, J.1
Susskind, L.2
-
36
-
-
33744526540
-
The lattice gauge theory approach to quantum chromodynamics
-
[22] J. Kogut and L. Susskind, Hamiltonian formulation of Wilson's lattice gauge theories, Phys. Rev. D 11 (1975) 395; J.B. Kogut, The lattice gauge theory approach to quantum chromodynamics, Rev. Mod. Phys. 55 (1983) 775.
-
(1983)
Rev. Mod. Phys.
, vol.55
, pp. 775
-
-
Kogut, J.B.1
-
37
-
-
0001681841
-
Glueball spectroscopy in 4d SU(3) lattice gauge theory(I)
-
[23] B. Berg and A. Billoire, Glueball spectroscopy in 4d SU(3) lattice gauge theory(I), Nucl. Phys, B 221 (1983) 109.
-
(1983)
Nucl. Phys, B
, vol.221
, pp. 109
-
-
Berg, B.1
Billoire, A.2
-
38
-
-
0031206283
-
Latticing quantum gravity
-
[24] R. Loll, Latticing quantum gravity, Nucl. Phys. B (Proc. Suppl.) 57 (1997) 255.
-
(1997)
Nucl. Phys. B (Proc. Suppl.)
, vol.57
, pp. 255
-
-
Loll, R.1
-
39
-
-
0001979597
-
Quantum theory of geometry I: Area operators
-
[25] A. Ashtekar and J. Lewandowski, Quantum theory of geometry I: area operators, Class. Quant. Grav. 14 (1997) A55.
-
(1997)
Class. Quant. Grav.
, vol.14
-
-
Ashtekar, A.1
Lewandowski, J.2
|