메뉴 건너뛰기




Volumn 13, Issue 3-4, 1997, Pages 199-206

Counting transitions - Entrance probabilities in non-homogeneous semi-Markov systems

Author keywords

Membership; Population structure; Semi markov model

Indexed keywords

MATHEMATICAL MODELS; MEMBERSHIP FUNCTIONS; NUMERICAL METHODS; PROBABILITY;

EID: 0031224751     PISSN: 87550024     EISSN: None     Source Type: Journal    
DOI: 10.1002/(sici)1099-0747(199709/12)13:3/4<199::aid-asm313>3.0.co;2-2     Document Type: Article
Times cited : (10)

References (16)
  • 1
    • 0001057674 scopus 로고
    • Non-homogeneous semi Markov systems and maintainability of the state sizes
    • P.-C. G. Vassiliou, and A. A. Papadopoulou, 'Non-homogeneous semi Markov systems and maintainability of the state sizes, J. Appl. Prob. 29, 519-534 (1992).
    • (1992) J. Appl. Prob. , vol.29 , pp. 519-534
    • Vassiliou, P.-C.G.1    Papadopoulou, A.A.2
  • 2
    • 11444258397 scopus 로고
    • Asymptotic behavior of non-homogeneous semi-Markov systems
    • A. A. Papadopoulou and P.-C. G. Vassiliou, 'Asymptotic behavior of non-homogeneous semi-Markov systems', Linear Algebra Applic., 210, 153-198 (1994).
    • (1994) Linear Algebra Applic. , vol.210 , pp. 153-198
    • Papadopoulou, A.A.1    Vassiliou, P.-C.G.2
  • 3
    • 0039477022 scopus 로고
    • On the limiting behaviour of a non-homogeneous Markov chain model in manpower systems
    • P.-C. G. Vassiliou, 'On the limiting behaviour of a non-homogeneous Markov chain model in manpower systems', Biometrica, 68, 557-561 (1981).
    • (1981) Biometrica , vol.68 , pp. 557-561
    • Vassiliou, P.-C.G.1
  • 4
    • 0043012337 scopus 로고
    • Stability in a non-homogeneous Markov chain model in manpower systems
    • P.-C. G. Vassiliou, 'Stability in a non-homogeneous Markov chain model in manpower systems', J. Appl. Prob. 18, 924-930 (1981).
    • (1981) J. Appl. Prob. , vol.18 , pp. 924-930
    • Vassiliou, P.-C.G.1
  • 5
    • 0020269875 scopus 로고
    • Asymptotic behaviour of Markov systems
    • P.-C. G. Vassiliou, 'Asymptotic behaviour of Markov systems', J. Appl. Prob. 19, 851-857 (1982).
    • (1982) J. Appl. Prob. , vol.19 , pp. 851-857
    • Vassiliou, P.-C.G.1
  • 6
    • 0020169194 scopus 로고
    • Predicting the service in the grade distribution in Manpower systems
    • P.-C. G. Vassiliou, 'Predicting the service in the grade distribution in Manpower systems', Eur. J. Operat. Res., 10, 373-378 (1982).
    • (1982) Eur. J. Operat. Res. , vol.10 , pp. 373-378
    • Vassiliou, P.-C.G.1
  • 7
    • 0000867313 scopus 로고
    • The two stage model for personnel behaviour
    • S. I. McClean, 'The two stage model for personnel behaviour', J. R. Statist. Soc. A, A139, 205-217 (1976).
    • (1976) J. R. Statist. Soc. A , vol.A139 , pp. 205-217
    • McClean, S.I.1
  • 8
    • 0001994158 scopus 로고
    • Continuous time stochastic models for a multigrade population
    • S. I. McClean, 'Continuous time stochastic models for a multigrade population', J. Appl. Prob., 15, 26-32 (1978).
    • (1978) J. Appl. Prob. , vol.15 , pp. 26-32
    • McClean, S.I.1
  • 9
    • 0009241593 scopus 로고
    • A semi-Markov model for a multigrade population with Poisson recruitment
    • S. I. McClean, 'A semi-Markov model for a multigrade population with Poisson recruitment', J. Appl. Prob., 17, 846-852 (1980).
    • (1980) J. Appl. Prob. , vol.17 , pp. 846-852
    • McClean, S.I.1
  • 11
    • 0009227227 scopus 로고
    • Semi-Markovian Manpower models in continuous time
    • A. Mehlman, 'Semi-Markovian Manpower models in continuous time', J. Appl. Prob., 16, 416-422 (1979).
    • (1979) J. Appl. Prob. , vol.16 , pp. 416-422
    • Mehlman, A.1
  • 16
    • 0000384627 scopus 로고
    • Control of asymptotic variability in non-homogeneous Markov systems
    • P.C. G. Vassiliou, A. Georgiou and N. Tsantas, 'Control of asymptotic variability in non-homogeneous Markov systems', J. Appl. Prob. 27, 756-766 (1990).
    • (1990) J. Appl. Prob. , vol.27 , pp. 756-766
    • Vassiliou, P.C.G.1    Georgiou, A.2    Tsantas, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.