-
1
-
-
0023566098
-
Kolmogorov's mapping neural network existence theorem
-
R. Hecht-Nielsen, "Kolmogorov's mapping neural network existence theorem", Proc. Int. Conf. on Neural Networks, pp. 11-14, 1987.
-
(1987)
Proc. Int. Conf. on Neural Networks
, pp. 11-14
-
-
Hecht-Nielsen, R.1
-
2
-
-
0009650570
-
Generalization and regularization in nonlinear learning systems
-
M. Arbib (editor) MIT press
-
G. Wahba, "Generalization and regularization in nonlinear learning systems", The Handbook of Brain Theory and Neural Networks, M. Arbib (editor) MIT press, pp. 426-430, 1995.
-
(1995)
The Handbook of Brain Theory and Neural Networks
, pp. 426-430
-
-
Wahba, G.1
-
3
-
-
0000155950
-
The cascade-correlation learning architecture
-
S. Fahlman and C. Lebiere, "The cascade-correlation learning architecture", NIPS, Vol. 2, pp. 524-532, 1990.
-
(1990)
NIPS
, vol.2
, pp. 524-532
-
-
Fahlman, S.1
Lebiere, C.2
-
5
-
-
0000494467
-
Handwritten digit recognition with a backpropagation network
-
Y. Le Cun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard and L. Jackel, "Handwritten digit recognition with a backpropagation network, NIPS, Vol. 2, pp. 396-404, 1990.
-
(1990)
NIPS
, vol.2
, pp. 396-404
-
-
Le Cun, Y.1
Boser, B.2
Denker, J.3
Henderson, D.4
Howard, R.5
Hubbard, W.6
Jackel, L.7
-
6
-
-
0344710496
-
Avoiding overfitting by finite temperature learning and cross-validation
-
Paris
-
S. Bös, "Avoiding overfitting by finite temperature learning and cross-validation", Proc. ICANN'95 (Paris), Vol. 2, pp. 111-116, 1995.
-
(1995)
Proc. ICANN'95
, vol.2
, pp. 111-116
-
-
Bös, S.1
-
7
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
D.J.C. MacKay, "A practical Bayesian framework for backpropagation networks", Neural Computation, Vol. 4, pp. 448-472, 1992.
-
(1992)
Neural Computation
, vol.4
, pp. 448-472
-
-
MacKay, D.J.C.1
-
10
-
-
0001447184
-
Neural network studies. 1. Comparison of overfitting and overtraining
-
I.V. Tetko, D.J. Livingstone and A.I. Luik, "Neural network studies. 1. Comparison of overfitting and overtraining", J. Chem. Inf. Comput. Sci., Vol. 35, pp. 826-833, 1995.
-
(1995)
J. Chem. Inf. Comput. Sci.
, vol.35
, pp. 826-833
-
-
Tetko, I.V.1
Livingstone, D.J.2
Luik, A.I.3
-
11
-
-
0030211964
-
Bagging predictors
-
L. Breimann, "Bagging predictors", Machine Learning, Vol. 24, pp. 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breimann, L.1
-
12
-
-
0031277422
-
Efficient partition of learning data sets for neural network training
-
in press
-
I.V. Tetko and A.E.P. Villa, "Efficient partition of learning data sets for neural network training", Neural Networks, 1997, in press.
-
(1997)
Neural Networks
-
-
Tetko, I.V.1
Villa, A.E.P.2
-
13
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
S. Geman, E. Bienenstock and R. Dourstat, "Neural networks and the bias/variance dilemma", Neural Computation, Vol. 4, pp. 1-58, 1992.
-
(1992)
Neural Computation
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Dourstat, R.3
-
14
-
-
0141799329
-
Asymptomic statistical theory of overtraining and cross-validation
-
METR-95/06
-
S. Amari, N. Murata, K.-R. Muller, M. Finke and H. Yang, "Asymptomic statistical theory of overtraining and cross-validation", Technical report University of Tokyo, METR-95/06, 1995.
-
(1995)
Technical Report University of Tokyo
-
-
Amari, S.1
Murata, N.2
Muller, K.-R.3
Finke, M.4
Yang, H.5
|