-
6
-
-
36749106818
-
-
(b) Klein, D. J.; Nelin, C. J.; Alexander, S.; Matsen, F. A. J. Chem. Phys. 1982, 77, 3101.
-
(1982)
J. Chem. Phys.
, vol.77
, pp. 3101
-
-
Klein, D.J.1
Nelin, C.J.2
Alexander, S.3
Matsen, F.A.4
-
10
-
-
33947093850
-
-
Davidson, E. R.; Borden, W. T.; Smith, J. J. Am. Chem. Soc. 1978, 100, 3299.
-
(1978)
J. Am. Chem. Soc.
, vol.100
, pp. 3299
-
-
Davidson, E.R.1
Borden, W.T.2
Smith, J.3
-
11
-
-
0001188658
-
-
Du, P.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 1989, 111, 3773.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 3773
-
-
Du, P.1
Hrovat, D.A.2
Borden, W.T.3
-
12
-
-
37049067721
-
-
Wright, S. C.; Cooper, D. L.; Gerratt, J.; Raimondi, M. J. Chem. Soc., Chem. Commun 1989, 1489.
-
(1989)
J. Chem. Soc., Chem. Commun
, pp. 1489
-
-
Wright, S.C.1
Cooper, D.L.2
Gerratt, J.3
Raimondi, M.4
-
13
-
-
0001420661
-
-
Wrigh, S. C.; Cooper, D. L.; Gerratt, J.; Raimondi, M. J. Phys. Chem. 1992, 96, 7943.
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 7943
-
-
Wrigh, S.C.1
Cooper, D.L.2
Gerratt, J.3
Raimondi, M.4
-
16
-
-
21844485111
-
-
Raos, G.; Gerratt, J.; Cooper, D. L.; Raimondi, M. Chem. Phys. 1994, 186, 251.
-
(1994)
Chem. Phys.
, vol.186
, pp. 251
-
-
Raos, G.1
Gerratt, J.2
Cooper, D.L.3
Raimondi, M.4
-
17
-
-
0030572284
-
-
Dannenberg, J. J.; Liotard, D.; Halvick, P.; Rayez, J. C. J. Phys. Chem. 1996, 100, 9631.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 9631
-
-
Dannenberg, J.J.1
Liotard, D.2
Halvick, P.3
Rayez, J.C.4
-
18
-
-
0003370015
-
-
Cooper, D. I.; Gerratt, J.; Raimondi, M. Adv. Chem. Phys. 1987, 69, 319.
-
(1987)
Adv. Chem. Phys.
, vol.69
, pp. 319
-
-
Cooper, D.I.1
Gerratt, J.2
Raimondi, M.3
-
19
-
-
4243122786
-
-
Cooper, D. L.; Gerratt, J.; Raimondi, M. Chem. Rev. 1991, 91, 929.
-
(1991)
Chem. Rev.
, vol.91
, pp. 929
-
-
Cooper, D.L.1
Gerratt, J.2
Raimondi, M.3
-
20
-
-
5644292239
-
-
Pure triplet coupling would allow some linear invariance which could be used to localize the orbitals in the antipair
-
Pure triplet coupling would allow some linear invariance which could be used to localize the orbitals in the antipair.
-
-
-
-
21
-
-
0011980688
-
-
(a) Feller, D.; Davidson, E. R.; Borden, W. T. J. Am. Chem. Soc. 1982, 104, 1216.
-
(1982)
J. Am. Chem. Soc.
, vol.104
, pp. 1216
-
-
Feller, D.1
Davidson, E.R.2
Borden, W.T.3
-
22
-
-
0000745545
-
-
(b) Budzelaar, P. H. M.; Kraka, E.; Cremer, D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 561.
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 561
-
-
Budzelaar, P.H.M.1
Kraka, E.2
Cremer, D.3
Schleyer, P.V.R.4
-
26
-
-
0001196734
-
-
Karadakov, P. B.; Gerratt, J.; Cooper, D. L.; Raimondi, M. J. Chem. Phys. 1992, 97, 7637.
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 7637
-
-
Karadakov, P.B.1
Gerratt, J.2
Cooper, D.L.3
Raimondi, M.4
-
27
-
-
5644259948
-
-
Ph.D. Thesis, University of Bristol, in preparation
-
S. J. McNicholas, Ph.D. Thesis, University of Bristol, in preparation.
-
-
-
McNicholas, S.J.1
-
28
-
-
0020798936
-
-
Maynau, D.; Said, M.; Malrieu, J. P. J. Am. Chem. Soc. 1983, 105, 5244.
-
(1983)
J. Am. Chem. Soc.
, vol.105
, pp. 5244
-
-
Maynau, D.1
Said, M.2
Malrieu, J.P.3
-
30
-
-
21844495249
-
-
Raos, G.; Gerrat, J.; Cooper, D. L.; Raimondi, M. Chem. Phys. 1994, 186, 233.
-
(1994)
Chem. Phys.
, vol.186
, pp. 233
-
-
Raos, G.1
Gerrat, J.2
Cooper, D.L.3
Raimondi, M.4
-
31
-
-
5644299298
-
-
25
-
25
-
-
-
-
33
-
-
84963255751
-
-
D. J. Klein and S. A. Alexander [Mol. Cryst. Liq. Cryst. 1993, 232, 219] have examined in some detail the size- or N -dependence of the singlet - triplet splitting of a model biradical. They show that the correlation correction to the "Hund's-rule-favoring" RHF splitting vanishes in the large-N limit, if doubly-excited CI is adopted in place of a size-extensive method. More generally, they argue that any truncated CI expansion, although acceptable for a small system, artificially switches over to Hund's rule prediction for larger systems.
-
(1993)
Mol. Cryst. Liq. Cryst.
, vol.232
, pp. 219
-
-
Klein, D.J.1
Alexander, S.A.2
-
34
-
-
5644286496
-
-
We have confined our discussion mainly to the properties of the eigenstates of the Hamiltonian (or their approximations). However, particularly in the case of the polymer, it is also important to take into account the role of temperature: this produces mixing of the ground and of the excited states. In a one-dimensional system, for any "reasonable" form of the Hamiltonian, there can be no phase transition to a low-entropy ordered state (i.e., to any sort of magnetic phase). This is a general statistical mechanical theorem: see for example ref 31
-
We have confined our discussion mainly to the properties of the eigenstates of the Hamiltonian (or their approximations). However, particularly in the case of the polymer, it is also important to take into account the role of temperature: this produces mixing of the ground and of the excited states. In a one-dimensional system, for any "reasonable" form of the Hamiltonian, there can be no phase transition to a low-entropy ordered state (i.e., to any sort of magnetic phase). This is a general statistical mechanical theorem: see for example ref 31.
-
-
-
|