-
1
-
-
0040309430
-
-
1. Alías, L. J., Romero, A., Sánchez, M. (1995). Gen. Rel. Grav. 27, 71.
-
(1995)
Gen. Rel. Grav.
, vol.27
, pp. 71
-
-
Alías, L.J.1
Romero, A.2
Sánchez, M.3
-
3
-
-
0003353574
-
Global Lorentzian geometry
-
Marcel Dekker, New York
-
3. Beem, J. K., Ehrlich, P. E., Easley, K. L. (1996). Global Lorentzian Geometry (2nd. ed., Pure and Applied Mathematics vol 202, Marcel Dekker, New York).
-
(1996)
2nd. Ed., Pure and Applied Mathematics
, vol.202
-
-
Beem, J.K.1
Ehrlich, P.E.2
Easley, K.L.3
-
6
-
-
0010952325
-
-
A. Ambrosetti, K. C. Chang, eds. (Gordon & Breach, New York)
-
6. Benci, V., Fortunato, D. (1995). In Proc. Conf. on Variational Methods and Non-linear Analysis, A. Ambrosetti, K. C. Chang, eds. (Gordon & Breach, New York), p. 1.
-
(1995)
Proc. Conf. on Variational Methods and Non-linear Analysis
, pp. 1
-
-
Benci, V.1
Fortunato, D.2
-
7
-
-
0002556197
-
-
7. Benci, V., Fortunato, D., Giannoni, F. (1991). Ann. Inst. Henri Poincaré - Analyse non linaire 8, 79.
-
(1991)
Ann. Inst. Henri Poincaré - Analyse Non Linaire
, vol.8
, pp. 79
-
-
Benci, V.1
Fortunato, D.2
Giannoni, F.3
-
8
-
-
0000506509
-
-
8. Benci, V., Fortunato, D., Giannoni, F. (1992). Ann. Scuola Norm. Sup. Pisa, Ser. IV, XIX, 255.
-
(1992)
Ann. Scuola Norm. Sup. Pisa, Ser. IV
, vol.19
, pp. 255
-
-
Benci, V.1
Fortunato, D.2
Giannoni, F.3
-
9
-
-
51649143123
-
-
9. Benci, V., Fortunato, D., Masiello, A. (1994). Math. Z. 217, 73.
-
(1994)
Math. Z.
, vol.217
, pp. 73
-
-
Benci, V.1
Fortunato, D.2
Masiello, A.3
-
10
-
-
0000895403
-
-
10. Deszcz, R., Verstraelen, L., Vrancken, L. (1991). Gen. Rel. Grav. 23, 671.
-
(1991)
Gen. Rel. Grav.
, vol.23
, pp. 671
-
-
Deszcz, R.1
Verstraelen, L.2
Vrancken, L.3
-
18
-
-
0003311802
-
Semi-riemannian geometry with applications to relativity
-
Academic Press, New York
-
18. O'Neill, B. (1983). Semi-Riemannian Geometry with Applications to Relativity (Pure and Applied Ser. vol 103, Academic Press, New York).
-
(1983)
Pure and Applied Ser.
, vol.103
-
-
O'Neill, B.1
-
19
-
-
0003259407
-
Techniques of differential topology in relativity
-
S.I.A.M.
-
19. Penrose, R. (1972). Techniques of Differential Topology in Relativity (Conference board of Math. Sc. Vol. 7, S.I.A.M.).
-
(1972)
Conference Board of Math. Sc.
, vol.7
-
-
Penrose, R.1
-
22
-
-
0346168999
-
Structure of lorentzian tori with a killing vector field
-
22. Sánchez, M. (1997). "Structure of Lorentzian tori with a Killing vector field," to appear in Trans. Amer. Math. Soc.
-
(1997)
Trans. Amer. Math. Soc.
-
-
Sánchez, M.1
|