메뉴 건너뛰기




Volumn 14, Issue 6, 1997, Pages 561-570

Concise parallel Dixon determinant

Author keywords

Dixon resultants; Intermediate expression swell; Parallel computation

Indexed keywords

COMPUTER AIDED DESIGN; PARALLEL ALGORITHMS;

EID: 0031195480     PISSN: 01678396     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8396(96)00046-5     Document Type: Article
Times cited : (10)

References (5)
  • 2
    • 0002758558 scopus 로고
    • Implicitizing rational surfaces with base points by applying perturbations and the factors of zero theorem
    • Lyche, T. and Schumaker, L.L., eds.
    • Chionh, E.W. and Goldman, R.N. (1992), Implicitizing rational surfaces with base points by applying perturbations and the factors of zero theorem, in: Lyche, T. and Schumaker, L.L., eds., Mathematical Methods in Computer Aided Geometric Design II, 101-110.
    • (1992) Mathematical Methods in Computer Aided Geometric Design II , pp. 101-110
    • Chionh, E.W.1    Goldman, R.N.2
  • 3
    • 84960589566 scopus 로고
    • The eliminant of three quantics in two independent variables
    • Dixon, A.L. (1908), The eliminant of three quantics in two independent variables, Proc. London Math. Soc. 6, 49-69, 473-492.
    • (1908) Proc. London Math. Soc. , vol.6 , pp. 49-69
    • Dixon, A.L.1
  • 4
    • 0022142487 scopus 로고
    • Some applications of resultants to problems in computational geometry
    • Goldman, R.N. and Sederberg, T.W. (1985), Some applications of resultants to problems in computational geometry, The Visual Computer 1, 101-107.
    • (1985) The Visual Computer , vol.1 , pp. 101-107
    • Goldman, R.N.1    Sederberg, T.W.2
  • 5
    • 0026866264 scopus 로고
    • Algorithms for implicitizing rational parametric surfaces
    • Manocha, D. and Canny, J.F. (1992), Algorithms for implicitizing rational parametric surfaces, Computer Aided Geometric Design 9, 25-50.
    • (1992) Computer Aided Geometric Design , vol.9 , pp. 25-50
    • Manocha, D.1    Canny, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.