-
1
-
-
0342295748
-
A model for a two-layered plate with interfacial slip
-
Control and Estimation of Distributed Parameter Systems: Non-linear Phenomena (editors W. Desch, F. Kappel, K. Kunish), Basel: Birkhaüser
-
S. W. HANSEN 1994 In Control and Estimation of Distributed Parameter Systems: Non-linear Phenomena (editors W. Desch, F. Kappel, K. Kunish), International Series of Numerical Analysis, ISNA 118, 143-170. Basel: Birkhaüser. A Model for a two-layered plate with interfacial slip.
-
(1994)
International Series of Numerical Analysis, ISNA
, vol.118
, pp. 143-170
-
-
Hansen, S.W.1
-
4
-
-
85024576684
-
Theory of vibratory bending for elastic and viscoelastic layered finite-length beams
-
R. A. DITARANTO 1965 Journal of Applied Mechanics 32, 881-886. Theory of vibratory bending for elastic and viscoelastic layered finite-length beams.
-
(1965)
Journal of Applied Mechanics
, vol.32
, pp. 881-886
-
-
DiTaranto, R.A.1
-
5
-
-
0001548347
-
The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions
-
D. J. MEAD and S. MARKUS 1969 Journal of Sound and Vibration 10, 163-175. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions.
-
(1969)
Journal of Sound and Vibration
, vol.10
, pp. 163-175
-
-
Mead, D.J.1
Markus, S.2
-
6
-
-
0020477595
-
A comparison of some equations for the flexural vibration of damped sandwich beams
-
D. J. MEAD 1982 Journal of Sound and Vibration 83, 363-377. A comparison of some equations for the flexural vibration of damped sandwich beams.
-
(1982)
Journal of Sound and Vibration
, vol.83
, pp. 363-377
-
-
Mead, D.J.1
-
7
-
-
0028416409
-
Bending and shear damping in beams: Frequency domain estimation techniques
-
H. T. BANKS, Y. WANG and D. J. INMAN 1991 AMSE J. Vibration and Acoustics 116, 188-197. Bending and shear damping in beams: frequency domain estimation techniques.
-
(1991)
AMSE J. Vibration and Acoustics
, vol.116
, pp. 188-197
-
-
Banks, H.T.1
Wang, Y.2
Inman, D.J.3
-
8
-
-
0019898082
-
A mathematical model for linear elastic systems with structural damping
-
G. CHEN and D. L. RUSSELL 1982 Quarterly of Applied Mathematics 39, 433-454. A mathematical model for linear elastic systems with structural damping.
-
(1982)
Quarterly of Applied Mathematics
, vol.39
, pp. 433-454
-
-
Chen, G.1
Russell, D.L.2
-
9
-
-
0001674328
-
Mathematical models for the elastic beam and their control - Theoretical implications
-
editors Brezis, Crandall and Kappel Harlow: Longman Scientific and Technical
-
D. L. RUSSELL 1986 Mathematical Models for the Elastic Beam and their Control - Theoretical Implications (editors Brezis, Crandall and Kappel) series: Pitman Research Notes in Mathematics 152, 177-216. Harlow: Longman Scientific and Technical.
-
(1986)
Series: Pitman Research Notes in Mathematics
, vol.152
, pp. 177-216
-
-
Russell, D.L.1
-
10
-
-
0004925464
-
-
(Section 3) The American Society of Mechanical Engineers, Cambridge, MA: Bolt, Beranek and Newman Inc; Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminates
-
D. ROSS, E. E. UNGAR, and E. M. KERWIN JR. 1959 in Structural Damping (Section 3) The American Society of Mechanical Engineers, 49-85. Cambridge, MA: Bolt, Beranek and Newman Inc; Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminates.
-
(1959)
Structural Damping
, pp. 49-85
-
-
Ross, D.1
Ungar, E.E.2
Kerwin E.M., Jr.3
|