메뉴 건너뛰기




Volumn 27, Issue 3, 1997, Pages 209-240

Integrating Multiple Learning Strategies in First Order Logics

Author keywords

Learning from Databases; Learning Relations; Multistrategy Learning

Indexed keywords

FORMAL LANGUAGES; FORMAL LOGIC; KNOWLEDGE ACQUISITION; KNOWLEDGE REPRESENTATION; LEARNING ALGORITHMS; RELATIONAL DATABASE SYSTEMS;

EID: 0031164490     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007361708126     Document Type: Article
Times cited : (23)

References (88)
  • 1
    • 0011395616 scopus 로고
    • Declarative bias for specific-to-general ILP systems
    • Ade, H., De Raedt, L., & Bruynooghe, M. (1995). Declarative bias for specific-to-general ILP systems. Machine Learning, 20:119-154.
    • (1995) Machine Learning , vol.20 , pp. 119-154
    • Ade, H.1    De Raedt, L.2    Bruynooghe, M.3
  • 2
    • 0002198395 scopus 로고
    • Towards a theory of declarative knowledge
    • Minker, J., editor, Morgan Kaufmann, Los Altos, CA
    • Apt, K., Blair, H., & Walker, A. (1988). Towards a theory of declarative knowledge. In Minker, J., editor, Foundations of Deductive Databases and Logic Programming, pages 89-148. Morgan Kaufmann, Los Altos, CA.
    • (1988) Foundations of Deductive Databases and Logic Programming , pp. 89-148
    • Apt, K.1    Blair, H.2    Walker, A.3
  • 3
    • 0007642227 scopus 로고
    • Learning noise tolerant classification procedures by integrating inductive learning and genetic algorithms
    • Harpers Ferry, WV
    • Bala, J., De Jong, K., & Pachowicz, P. (1991). Learning noise tolerant classification procedures by integrating inductive learning and genetic algorithms. In First International Workshop on Multistrategy Learning, pages 316-323, Harpers Ferry, WV.
    • (1991) First International Workshop on Multistrategy Learning , pp. 316-323
    • Bala, J.1    De Jong, K.2    Pachowicz, P.3
  • 5
    • 0042655409 scopus 로고
    • WHY: A system that learns using causal models and examples
    • Michalski, R. and Tecuci, G., editors, Morgan Kaufmann, San Francisco, CA
    • Baroglio, C., Botta, M., & Saitta, L. (1994). WHY: A system that learns using causal models and examples. In Michalski, R. and Tecuci, G., editors, Machine Learning: A Multistrategy Approach, volume IV, pages 319-347. Morgan Kaufmann, San Francisco, CA.
    • (1994) Machine Learning: A Multistrategy Approach , vol.4 , pp. 319-347
    • Baroglio, C.1    Botta, M.2    Saitta, L.3
  • 7
    • 0002858094 scopus 로고
    • Generalized convergence models for tournament- and (μ, λ) -selection
    • Pittsburg, PA
    • Bäck, T. (1995). Generalized convergence models for tournament- and (μ, λ) -selection. In 6th International Conference on Genetic Algorithms, pages 2-8, Pittsburg, PA.
    • (1995) 6th International Conference on Genetic Algorithms , pp. 2-8
    • Bäck, T.1
  • 8
    • 38249014118 scopus 로고
    • An architecture for designing fuzzy controllers with neural networks
    • Berenji, H. (1992). An architecture for designing fuzzy controllers with neural networks. International Journal of Approximate Reasoning, 6(2):267-292.
    • (1992) International Journal of Approximate Reasoning , vol.6 , Issue.2 , pp. 267-292
    • Berenji, H.1
  • 18
    • 2442461435 scopus 로고    scopus 로고
    • Direct access of an ILP algorithm to a database management system
    • Bari, Italy
    • Brockhausen, P. & Morik, K. (1996). Direct access of an ILP algorithm to a database management system. In Proc. of the MLnet Familiarization Workshop, pages 95-110, Bari, Italy.
    • (1996) Proc. of the MLnet Familiarization Workshop , pp. 95-110
    • Brockhausen, P.1    Morik, K.2
  • 19
    • 0024084964 scopus 로고
    • Generalized subsumption and its application to induction and redundancy
    • Buntine, W. (1988). Generalized subsumption and its application to induction and redundancy. Artificial Intelligence, 36:149-176.
    • (1988) Artificial Intelligence , vol.36 , pp. 149-176
    • Buntine, W.1
  • 21
    • 0000826543 scopus 로고
    • Negation as failure
    • Gallaire, H. and Minker, J., editors, Plenum Press, New York, NY
    • Clark, K. (1978). Negation as failure. In Gallaire, H. and Minker, J., editors, Logic and Data Bases, pages 293-322. Plenum Press, New York, NY.
    • (1978) Logic and Data Bases , pp. 293-322
    • Clark, K.1
  • 22
    • 0027696338 scopus 로고
    • Using genetic algorithms for concept learning
    • De Jong, K. A., Spears, W. M., & Gordon, F. D. (1993). Using genetic algorithms for concept learning. Machine Learning, 13:161-188.
    • (1993) Machine Learning , vol.13 , pp. 161-188
    • De Jong, K.A.1    Spears, W.M.2    Gordon, F.D.3
  • 23
    • 0028529173 scopus 로고
    • First-order jk-clausal theories are PAC -learnable
    • De Raedt, L. & Džeroski, S. (1994). First-order jk-clausal theories are PAC -learnable. Artificial Intelligence, 70:375-392.
    • (1994) Artificial Intelligence , vol.70 , pp. 375-392
    • De Raedt, L.1    Džeroski, S.2
  • 24
    • 0000017646 scopus 로고
    • Explanation based learning: An alternative view
    • DeJong, G. & Mooney, R. (1986). Explanation based learning: an alternative view. Machine Learning, 1:145-176.
    • (1986) Machine Learning , vol.1 , pp. 145-176
    • DeJong, G.1    Mooney, R.2
  • 25
    • 0002032320 scopus 로고
    • A comparative review of selected methods for learning from examples
    • Carbonell, J., Michalski, R., and Mitchell, T., editors, Morgan Kaufmann, Los Altos, CA
    • Dietterich, T. & Michalski, R. (1983). A comparative review of selected methods for learning from examples. In Carbonell, J., Michalski, R., and Mitchell, T., editors, Machine Learning, an Artificial Intelligence Approach, pages 41-82. Morgan Kaufmann, Los Altos, CA.
    • (1983) Machine Learning, An Artificial Intelligence Approach , pp. 41-82
    • Dietterich, T.1    Michalski, R.2
  • 27
    • 0007458798 scopus 로고
    • PhD thesis, Tilburg University (Netherlands), CIP-Gegevens KoninKlijke Bibliotheek, Den Haag
    • Flach, P. (1995). Conjectures: An Inquiry Concerning the Logic of Induction. PhD thesis, Tilburg University (Netherlands), CIP-Gegevens KoninKlijke Bibliotheek, Den Haag.
    • (1995) Conjectures: An Inquiry Concerning the Logic of Induction
    • Flach, P.1
  • 29
  • 30
    • 0000662737 scopus 로고    scopus 로고
    • Search-intensive concept induction
    • Giordana, A. & Neri, F. (1996). Search-intensive concept induction. Evolutionary Computation, 3:375-416.
    • (1996) Evolutionary Computation , vol.3 , pp. 375-416
    • Giordana, A.1    Neri, F.2
  • 31
  • 39
    • 12444258560 scopus 로고
    • Evaluation and selection of biases in machine learning
    • Gordon, D. & desJardins, M. (1995). Evaluation and selection of biases in machine learning. Machine Learning, 20:5-22.
    • (1995) Machine Learning , vol.20 , pp. 5-22
    • Gordon, D.1    DesJardins, M.2
  • 40
    • 0027696043 scopus 로고
    • Competition-based induction of decision models from examples
    • Greene, D. & Smith, S. (1993). Competition-based induction of decision models from examples. Machine Learning, 13:229-258.
    • (1993) Machine Learning , vol.13 , pp. 229-258
    • Greene, D.1    Smith, S.2
  • 41
    • 0000488536 scopus 로고
    • Learning sequential decision rules using simulation models and competition
    • Grefenstette, J., Ramsey, C., & Schultz, A. (1990). Learning sequential decision rules using simulation models and competition. Machine Learning, 5:355-381.
    • (1990) Machine Learning , vol.5 , pp. 355-381
    • Grefenstette, J.1    Ramsey, C.2    Schultz, A.3
  • 42
    • 2542455833 scopus 로고
    • Learning conjunctive concepts in structural domains
    • Haussler, D. (1988). Learning conjunctive concepts in structural domains. Machine Learning, 4:7-40.
    • (1988) Machine Learning , vol.4 , pp. 7-40
    • Haussler, D.1
  • 43
    • 0017973898 scopus 로고
    • An interference matching technique for inducing abstractions
    • Hayes-Roth, F. & McDermott, J. (1978). An interference matching technique for inducing abstractions. Communications of the ACM, 21:401-411.
    • (1978) Communications of the ACM , vol.21 , pp. 401-411
    • Hayes-Roth, F.1    McDermott, J.2
  • 45
    • 0020843353 scopus 로고
    • On compiling queries in recursive, first order databases
    • Henschen, L. J. & Naqvi, S. A. (1984). On compiling queries in recursive, first order databases. Journal of ACM, 31, pages 47-85.
    • (1984) Journal of ACM , vol.31
    • Henschen, L.J.1    Naqvi, S.A.2
  • 46
    • 0027696178 scopus 로고
    • A knowledge intensive genetic algorithm for supervised learning
    • Janikow, C. (1993). A knowledge intensive genetic algorithm for supervised learning. Machine Learning, 13:198-228.
    • (1993) Machine Learning , vol.13 , pp. 198-228
    • Janikow, C.1
  • 47
    • 0004265684 scopus 로고
    • Improving the generalization step in learning
    • Carbonell, J.G., Michalski, R., and Mitchell, T. M., editors, Morgan Kaufmann, San Mateo, CA
    • Kodratoff, Y. & Ganascia, J. (1986). Improving the generalization step in learning. In Carbonell, J.G., Michalski, R., and Mitchell, T. M., editors, Machine Learning, an Artificial Intelligence Approach, volume II, pages 215-244. Morgan Kaufmann, San Mateo, CA.
    • (1986) Machine Learning, An Artificial Intelligence Approach , vol.2 , pp. 215-244
    • Kodratoff, Y.1    Ganascia, J.2
  • 51
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski, R., Carbonell, J., and Mitchell, T., editors, Los Altos, CA. Morgan Kaufmann
    • Michalski, R. (1983). A theory and methodology of inductive learning. In Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine Learning: An Artificial Intelligence Approach, pages 83-134, Los Altos, CA. Morgan Kaufmann.
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 83-134
    • Michalski, R.1
  • 52
    • 2442568188 scopus 로고
    • Inferential learning theory as a basis for multistrategy task-adaptive learning
    • Harpers Ferry, WV
    • Michalski, R. (1991). Inferential learning theory as a basis for multistrategy task-adaptive learning. In Proc of 1st International Workshop on Multistrategy Learning, pages 3-18, Harpers Ferry, WV.
    • (1991) Proc of 1st International Workshop on Multistrategy Learning , pp. 3-18
    • Michalski, R.1
  • 53
    • 0001161341 scopus 로고
    • Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis
    • Michalski, R. & Chilausky, R. (1980). Learning by being told and learning from examples: an experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. International Journal of Policy Analysis and Information Systems, 4:125-126.
    • (1980) International Journal of Policy Analysis and Information Systems , vol.4 , pp. 125-126
    • Michalski, R.1    Chilausky, R.2
  • 55
  • 56
    • 0002773313 scopus 로고
    • Learning with localized receptive fields
    • Sejnowski, T., Touretzky, D., and Hinton, G., editors, Carnegie Mellon University
    • Moody, J. & Darken, C. (1988). Learning with localized receptive fields. In Sejnowski, T., Touretzky, D., and Hinton, G., editors, Connectionist Models Summer School, Carnegie Mellon University.
    • (1988) Connectionist Models Summer School
    • Moody, J.1    Darken, C.2
  • 58
    • 0000640432 scopus 로고
    • Inductive logic programming
    • Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8:295-318.
    • (1991) New Generation Computing , vol.8 , pp. 295-318
    • Muggleton, S.1
  • 59
    • 77951503082 scopus 로고
    • Inverse entailment and Progol
    • Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13:245-286.
    • (1995) New Generation Computing , vol.13 , pp. 245-286
    • Muggleton, S.1
  • 62
  • 64
    • 0029505748 scopus 로고
    • Dynamically adding symbolically meaningful nodes to knowledge-based neural networks
    • Opitz, D. & Shavlik, J. (1995). Dynamically adding symbolically meaningful nodes to knowledge-based neural networks. Knowledge Based Systems, 8:301-311.
    • (1995) Knowledge Based Systems , vol.8 , pp. 301-311
    • Opitz, D.1    Shavlik, J.2
  • 66
    • 8844261754 scopus 로고
    • The utility of knowledge in inductive learning
    • Pazzani, M. & Kibler, D. (1992). The utility of knowledge in inductive learning. Machine Learning, 9:57-94.
    • (1992) Machine Learning , vol.9 , pp. 57-94
    • Pazzani, M.1    Kibler, D.2
  • 67
    • 0001602577 scopus 로고
    • A note in inductive generalization
    • Meltzer, B. and Michie, D., editors
    • Plotkin, G. (1970). A note in inductive generalization. In Meltzer, B. and Michie, D., editors, Machine Intelligence, volume V, pages 153-163.
    • (1970) Machine Intelligence , vol.5 , pp. 153-163
    • Plotkin, G.1
  • 68
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T. & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 70
    • 0001857179 scopus 로고
    • Efficient classification procedures
    • Carbonell, J., Michalski, R., and Mitchell, T., editors, Morgan Kaufmann, Los Altos, CA
    • Quinlan, R. (1983). Efficient classification procedures. In Carbonell, J., Michalski, R., and Mitchell, T., editors, Machine Learning, an Artificial Intelligence Approach, pages 463-482. Morgan Kaufmann, Los Altos, CA.
    • (1983) Machine Learning, An Artificial Intelligence Approach , pp. 463-482
    • Quinlan, R.1
  • 71
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • Quinlan, R. (1990). Learning logical definitions from relations. Machine Learning, 5:239-266.
    • (1990) Machine Learning , vol.5 , pp. 239-266
    • Quinlan, R.1
  • 72
    • 0003465475 scopus 로고
    • Learning internal representations by error propagation
    • Institute for Cognitive Science, La Jolla: University of California, San Diego
    • Rumelhart, D., Hinton, G., & Williams, R. (1985). Learning internal representations by error propagation. Technical Report 8506, Institute for Cognitive Science, La Jolla: University of California, San Diego.
    • (1985) Technical Report 8506
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 74
    • 0027599246 scopus 로고
    • Multistrategy learning and theory revision
    • Saitta, L., Botta, M., & Neri, F. (1993). Multistrategy learning and theory revision. Machine Learning, 11:153-172.
    • (1993) Machine Learning , vol.11 , pp. 153-172
    • Saitta, L.1    Botta, M.2    Neri, F.3
  • 78
    • 18544372929 scopus 로고
    • Relational cliches: Constraining constructive induction during relational learning
    • Evanston, IL
    • Silverstein, G. & Pazzani, M. (1991). Relational cliches: Constraining constructive induction during relational learning. In Proc. of the 8th International Workshop on Machine Learning, pages 203-207, Evanston, IL.
    • (1991) Proc. of the 8th International Workshop on Machine Learning , pp. 203-207
    • Silverstein, G.1    Pazzani, M.2
  • 82
    • 0004609430 scopus 로고
    • Improving the performance of rule induction system using genetic algorithms
    • Harpers Ferry, WV
    • Vafaie, H. & De Jong, K. (1991). Improving the performance of rule induction system using genetic algorithms. In Proc. of 1st International Workshop on Multistrategy Learning, pages 305-315, Harpers Ferry, WV.
    • (1991) Proc. of 1st International Workshop on Multistrategy Learning , pp. 305-315
    • Vafaie, H.1    De Jong, K.2
  • 83
    • 0042157820 scopus 로고
    • Inductive learning of relational production
    • Academic Press, London, UK
    • Vere, S. (1978). Inductive learning of relational production. In Pattern-Directed Inference System, pages 281-295. Academic Press, London, UK.
    • (1978) Pattern-Directed Inference System , pp. 281-295
    • Vere, S.1
  • 85
    • 0000027741 scopus 로고
    • Learning structural descriptions from example
    • Winston, P., editor, McGraw Hill, New York, NY
    • Winston, P. (1975). Learning structural descriptions from example. In Winston, P., editor, The psychology of computer vision, pages 157-209. McGraw Hill, New York, NY.
    • (1975) The Psychology of Computer Vision , pp. 157-209
    • Winston, P.1
  • 86
    • 0000599779 scopus 로고
    • Hypothesis-driven constructive induction in AQ17-HCI: A method and experiments
    • Wnek, J. & Michalski, R. (1994). Hypothesis-driven constructive induction in AQ17-HCI: A method and experiments. Machine Learning, 14(2):139-168.
    • (1994) Machine Learning , vol.14 , Issue.2 , pp. 139-168
    • Wnek, J.1    Michalski, R.2
  • 88
    • 0002433202 scopus 로고
    • Knowledge representation in fuzzy logic
    • Yager, R. and Zadeh, L., editors, Kluver Academic Publishers
    • Zadeh, L. (1992). Knowledge representation in fuzzy logic. In Yager, R. and Zadeh, L., editors, An Introduction to Fuzzy Logic Applications in Intelligent Systems. Kluver Academic Publishers.
    • (1992) An Introduction to Fuzzy Logic Applications in Intelligent Systems
    • Zadeh, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.