메뉴 건너뛰기




Volumn 30, Issue 4, 1997, Pages 177-183

Complete controllability of continuous-time recurrent neural networks

Author keywords

Global stabilization; Linear discrete time systems; Saturated feedback

Indexed keywords

DISCRETE TIME CONTROL SYSTEMS; FEEDBACK; MATRIX ALGEBRA; NEURAL NETWORKS; STABILITY; STABILIZATION;

EID: 0031146078     PISSN: 01676911     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-6911(97)00002-9     Document Type: Article
Times cited : (50)

References (18)
  • 1
    • 0029408773 scopus 로고
    • Forward accessibility for recurrent neural networks
    • F. Albertini, P. Dai Pra, Forward accessibility for recurrent neural networks, IEEE Trans. Automat. Control 40 (1995) 1962-1968.
    • (1995) IEEE Trans. Automat. Control , vol.40 , pp. 1962-1968
    • Albertini, F.1    Dai Pra, P.2
  • 2
    • 0027795346 scopus 로고
    • For neural networks, function determines form
    • F. Albertini, E.D. Sontag, For neural networks, function determines form, Neural Networks 6 (1993) 975-990.
    • (1993) Neural Networks , vol.6 , pp. 975-990
    • Albertini, F.1    Sontag, E.D.2
  • 3
    • 0028417030 scopus 로고
    • State observability in recurrent neural networks
    • F. Albertini, E.D. Sontag, State observability in recurrent neural networks, Systems & Control Lett. 22 (1994) 235-244.
    • (1994) Systems & Control Lett. , vol.22 , pp. 235-244
    • Albertini, F.1    Sontag, E.D.2
  • 5
    • 0000029787 scopus 로고
    • FIR and IIR synapses, a new neural network, architecture for time-series modeling
    • A.D. Back, A.C. Tsoi, FIR and IIR synapses, a new neural network, architecture for time-series modeling, Neural Computation 3 (1991) 375-385.
    • (1991) Neural Computation , vol.3 , pp. 375-385
    • Back, A.D.1    Tsoi, A.C.2
  • 7
    • 0030241029 scopus 로고    scopus 로고
    • Sample complexity for learning recurrent perceptron mappings
    • B. Dasgupta, E.D. Sontag, Sample complexity for learning recurrent perceptron mappings, IEEE Trans. Inform. Theory 42 (1996) 1479-1487.
    • (1996) IEEE Trans. Inform. Theory , vol.42 , pp. 1479-1487
    • Dasgupta, B.1    Sontag, E.D.2
  • 9
    • 85033138259 scopus 로고    scopus 로고
    • Using Fourier-neural recurrent networks to fit sequential input/output data
    • to appear
    • R. Koplon, E.D. Sontag, Using Fourier-neural recurrent networks to fit sequential input/output data, Neurocomputing, to appear.
    • Neurocomputing
    • Koplon, R.1    Sontag, E.D.2
  • 12
    • 0029255891 scopus 로고
    • On the computational power of neural nets
    • H.T. Siegelmann, E.D. Sontag, On the computational power of neural nets, J. Comp. System Sci. 50 (1995) 132-150.
    • (1995) J. Comp. System Sci. , vol.50 , pp. 132-150
    • Siegelmann, H.T.1    Sontag, E.D.2
  • 16
    • 0026897370 scopus 로고
    • Uniqueness of the weights for minimal feedforward nets with a given input-output map
    • H.J. Sussmann, Uniqueness of the weights for minimal feedforward nets with a given input-output map, Neural Networks 5 (1992) 589-593.
    • (1992) Neural Networks , vol.5 , pp. 589-593
    • Sussmann, H.J.1
  • 17
    • 0027335110 scopus 로고
    • Lie algebra of recurrent neural networks and identifiability
    • San Francisco
    • R. Zbikowski, Lie algebra of recurrent neural networks and identifiability, in: Proc. Amer. Automat. Control Conf., San Francisco, 1993, pp. 2900-2901.
    • (1993) Proc. Amer. Automat. Control Conf. , pp. 2900-2901
    • Zbikowski, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.