메뉴 건너뛰기




Volumn 101, Issue 1005, 1997, Pages 199-208

A cell-vertex upwind scheme for two-dimensional supersonic Euler flows

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDARY CONDITIONS; COMPUTATIONAL FLUID DYNAMICS; NOZZLES;

EID: 0031145654     PISSN: 00019240     EISSN: None     Source Type: Trade Journal    
DOI: None     Document Type: Article
Times cited : (1)

References (24)
  • 3
    • 0021124472 scopus 로고
    • A two-point difference scheme for computing steadystate solutions to the conservative one-dimensional Euler equations
    • WORNOM, S.F. A two-point difference scheme for computing steadystate solutions to the conservative one-dimensional Euler equations, Comp Fluids, 1984, 12, (1), pp 11-30.
    • (1984) Comp Fluids , vol.12 , Issue.1 , pp. 11-30
    • Wornom, S.F.1
  • 4
    • 0022610357 scopus 로고
    • Calculation of quasi-one-dimensional flows with shocks
    • WORNOM, S.F. and HAFEZ, M.M. Calculation of quasi-one-dimensional flows with shocks, Comp Fluids, 1986, 14, (2), pp 131-140.
    • (1986) Comp Fluids , vol.14 , Issue.2 , pp. 131-140
    • Wornom, S.F.1    Hafez, M.M.2
  • 5
    • 0022664499 scopus 로고
    • Implicit conservative schemes for the Euler equations
    • WORNOM, S.F. and HAFEZ, M.M. Implicit conservative schemes for the Euler equations, AIAA J, 1986, 24, (2), pp 215-223.
    • (1986) AIAA J , vol.24 , Issue.2 , pp. 215-223
    • Wornom, S.F.1    Hafez, M.M.2
  • 9
    • 0000481473 scopus 로고
    • Steady shock tracking and Newton's method applied to one-dimensional duct flow
    • SHUBIN, G.R., STEPHEN, A.B. and GLAZ, H.M. Steady shock tracking and Newton's method applied to one-dimensional duct flow, J Comp Phys, 1981, 39, pp 364-374.
    • (1981) J Comp Phys , vol.39 , pp. 364-374
    • Shubin, G.R.1    Stephen, A.B.2    Glaz, H.M.3
  • 11
    • 0020209106 scopus 로고
    • November
    • NI, R-H. A Multiple-grid scheme for solving the Euler equations, AIAA paper 81-1025, Palo Alto, California, 1981, see also AIAA J, November 1982, 20, (11), pp 1565-1571.
    • (1982) AIAA J , vol.20 , Issue.11 , pp. 1565-1571
  • 15
    • 0000260472 scopus 로고
    • A high-order Godunov scheme for steady supersonic gas dynamics
    • GLAZ, H.M. and WARDLAW, A.B. A high-order Godunov scheme for steady supersonic gas dynamics, J Comp Phys, 1985, 58, pp 157-187.
    • (1985) J Comp Phys , vol.58 , pp. 157-187
    • Glaz, H.M.1    Wardlaw, A.B.2
  • 16
    • 0028546066 scopus 로고
    • Development of an approximate Riemann solver for the steady Euler equations
    • November
    • TORO, E.F. and CHAKRABORTY, A. Development of an approximate Riemann solver for the steady Euler equations, Aeronaut J, November 1994, 98, (979), pp 325-339.
    • (1994) Aeronaut J , vol.98 , Issue.979 , pp. 325-339
    • Toro, E.F.1    Chakraborty, A.2
  • 17
    • 0026805280 scopus 로고
    • Parabolized/reduced Navier-Stokes computational techniques
    • RUBIN, S.G. and TANNEHILL, J.C. Parabolized/reduced Navier-Stokes computational techniques, Annual Revue Fluid Mech, 1992, 24, pp 117-144.
    • (1992) Annual Revue Fluid Mech , vol.24 , pp. 117-144
    • Rubin, S.G.1    Tannehill, J.C.2
  • 18
    • 0026851112 scopus 로고
    • An explicit spatial marching algorithm for Navier-Stokes equations
    • SRINIVAS, K. An explicit spatial marching algorithm for Navier-Stokes equations, Camps and Fluids, 1992, 21, pp 291-299.
    • (1992) Camps and Fluids , vol.21 , pp. 291-299
    • Srinivas, K.1
  • 21
    • 2942757053 scopus 로고
    • Approximate Riemann solvers, parameter vectors, and difference schemes
    • ROE, P.L. Approximate Riemann solvers, parameter vectors, and difference schemes, J Comp Phys, 1981, 43, pp 357-372.
    • (1981) J Comp Phys , vol.43 , pp. 357-372
    • Roe, P.L.1
  • 22
    • 0020223604 scopus 로고
    • Flux-vector splitting for the Euler equations
    • VAN-LEER, B. Flux-vector splitting for the Euler equations, Lecture Notes in Physics, 1982, 170, pp 507-512.
    • (1982) Lecture Notes in Physics , vol.170 , pp. 507-512
    • Van-Leer, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.