메뉴 건너뛰기




Volumn 144, Issue 3, 1997, Pages 249-254

Stable receding horizon control based on recurrent networks

Author keywords

Control; Feedback; Optimality; Receding horizon; Recurrent; Stability; Xeural networks

Indexed keywords

COMPUTER SIMULATION; FEEDBACK CONTROL; LYAPUNOV METHODS; NEURAL NETWORKS; OPTIMAL CONTROL SYSTEMS; PROCESS CONTROL; SYSTEM STABILITY;

EID: 0031143968     PISSN: 13502379     EISSN: None     Source Type: Journal    
DOI: 10.1049/ip-cta:19970950     Document Type: Article
Times cited : (15)

References (22)
  • 1
    • 0025010309 scopus 로고
    • MCAVOY, T.JUse of neural networks for dynamical modelling and control of chemical process systems
    • BHAT, N., and MCAVOY, T.J.: 'Use of neural networks for dynamical modelling and control of chemical process systems', Computers Chem. Eng., 1990, 14, pp. 4-5
    • (1990) Computers Chem Eng. , vol.14 , pp. 4-5
    • Bhat, N.1
  • 2
    • 33746013981 scopus 로고
    • MOMTAGUE, G., KAMBHAMPATI, C., HOFLAND, A.G., THAM, M.T MORRIS, A.JOn the applicability of neural networks in chemical process control'
    • Dl MASSIMO, C, WILLIS, M., MOMTAGUE, G., KAMBHAMPATI, C., HOFLAND, A.G., THAM, M.T., and MORRIS, A.J.: 'On the applicability of neural networks in chemical process control'. AIChE annual meeting, Chicago, USA, 1990
    • (1990) AIChE Annual Meeting, Chicago, USA
    • Dl Massimo, C.1    Willis, M.2
  • 3
    • 0026219567 scopus 로고
    • J SBARBARO, DNeural networks for nonlinear internal model control
    • HUNT, K.J., and SBARBARO, D.: 'Neural networks for nonlinear internal model control', IEE Proc. D, 1991, 138, (5), pp. 431438
    • (1991) IEE Proc D , vol.138 , Issue.5 , pp. 431438
    • Hunt, K.1
  • 4
    • 0025399567 scopus 로고
    • S PARTHASARATHY, KAdaptive identification and control of dynamical systems using neural networks', IEEE Trans
    • NARENDRA, K.S., and PARTHASARATHY, K.: 'Adaptive identification and control of dynamical systems using neural networks', IEEE Trans. Neural Networks, 1990, 1, pp. 4-27
    • (1990) Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.1
  • 5
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function', Math
    • CYBENKO, G.: 'Approximation by superpositions of a sigmoidal function', Math. Contr. Syst., 1989, 2, pp. 303-314
    • (1989) Contr. Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0020118274 scopus 로고
    • JNeural networks and physical systems with emergent collective computational abilities', Proc
    • HOPFIELD, J.J.: 'Neural networks and physical systems with emergent collective computational abilities', Proc. Nat. Acad. Sci., 1982, 79, pp. 2554-2558
    • (1982) Nat. Acad. Sci. , vol.79 , pp. 2554-2558
    • Hopfield, J.1
  • 9
    • 0021835689 scopus 로고
    • J TANK, D.WNeural computation of decisions in optimisation problems', Biolog
    • HOPFIELD, J.J., and TANK, D.W.: 'Neural computation of decisions in optimisation problems', Biolog. Cybern., 1985, 52, pp. 141-152
    • (1985) Cybern. , vol.52 , pp. 141-152
    • Hopfield, J.1
  • 10
    • 33746021564 scopus 로고
    • M IOANNOU P.Identification and control of non-linear systems using neural network models: Design and stability analysis'
    • POLYCARPOU, M.M., and IOANNOU P..: 'Identification and control of non-linear systems using neural network models: design and stability analysis'. Tech. Report, USC, Los Angeles, 1991, Report Number 91-09-01
    • (1991) Tech. Report, USC, Los Angeles , Issue.9
    • Polycarpou, M.1
  • 11
    • 0025462720 scopus 로고
    • Q MICHALSKA, HReceding horizon control of non-linear systems', IEEE Trans
    • MAYNE, D.Q., and MICHALSKA, H.: 'Receding horizon control of non-linear systems', IEEE Trans. Auto. Cont., 1990, AC35, pp. 814-825
    • (1990) Auto. Cont. , vol.35 , pp. 814-825
    • Mayne, D.1
  • 12
    • 0001024026 scopus 로고
    • DAn algorithm for optimal control of non-linear systems with model-reality differences'
    • ROBERTS, P.D.: 'An algorithm for optimal control of non-linear systems with model-reality differences'. IFAC World Congress, Sydney, 1993, Vol. 8, pp. 407-412
    • (1993) IFAC World Congress, Sydney , vol.8 , pp. 407-412
    • Roberts, P.1
  • 13
    • 2542570433 scopus 로고
    • DOptimal control of non-linear systems with model-reality differences'
    • ROBERTS, P.D.: 'Optimal control of non-linear systems with model-reality differences'. Proceedings of 21st CDC, Tucson, USA, 1992, pp. 257-258
    • (1992) Proceedings of 21st CDC, Tucson, USA , pp. 257-258
    • Roberts, P.1
  • 14
    • 0026627238 scopus 로고
    • THAM, M.T., MONTAGUE, G.A MORRIS, A.JOptimising control of fermentation processes', IEE Proc
    • KAMBHAMPATI, C., THAM, M.T., MONTAGUE, G.A., and MORRIS, A.J.: 'Optimising control of fermentation processes', IEE Proc. D Control Theory Appl., 1992, 139, pp. 60-66
    • (1992) D Control Theory Appl. , vol.139 , pp. 60-66
    • Kambhampati, C.1
  • 17
    • 34250795530 scopus 로고
    • JA study of the asymptotic behavior of neural networks', IEEE Trans
    • D1MOPOULOS, N.J.: 'A study of the asymptotic behavior of neural networks', IEEE Trans. Circuits Syst.. 1989, 36, (5), pp. 687-694
    • (1989) Circuits Syst.. , vol.36 , Issue.5 , pp. 687-694
    • Dimopoulos, N.1
  • 21
    • 0029345293 scopus 로고
    • KAMBHAMPATI, C, and WARWICK, KA dynamic recurrent neural network for system identification and control
    • DELGADO, A., KAMBHAMPATI, C, and WARWICK, K.: 'A dynamic recurrent neural network for system identification and control', IEE Proc. D, 1995, 142, (4), pp. 307-314
    • (1995) IEE Proc D , vol.142 , Issue.4 , pp. 307-314
    • Delgado, A.1
  • 22
    • 0027697856 scopus 로고
    • NIKIFORUK, P.N GUPTA, M.MDirect adaptive output tracking control using multilayered neural networks
    • JIN, L., NIKIFORUK, P.N., and GUPTA, M.M.: 'Direct adaptive output tracking control using multilayered neural networks', IEE Proc. D. 1993, 140, pp. 393-398
    • (1993) IEE Proc D. , vol.140 , pp. 393-398
    • Jin, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.