-
2
-
-
84976855597
-
Algorithm 432: Solution of the matrix equation AX + XB = C
-
Bartels, R. H., and Stewart, G. W., 1972, Algorithm 432: Solution of the matrix equation AX + XB = C. Communications of the ACM, 15, 820-826.
-
(1972)
Communications of the ACM
, vol.15
, pp. 820-826
-
-
Bartels, R.H.1
Stewart, G.W.2
-
3
-
-
0002425751
-
The periodic Riccati equation
-
edited by S. Bittanti, A. J. Laub and J. C. Willems (Berlin, Germany: Springer-Verlag)
-
Bittanti, S., 1991, The periodic Riccati equation. The Riccati Equation, edited by S. Bittanti, A. J. Laub and J. C. Willems (Berlin, Germany: Springer-Verlag), pp. 127-162.
-
(1991)
The Riccati Equation
, pp. 127-162
-
-
Bittanti, S.1
-
4
-
-
0024054706
-
The difference periodic Riccati equation for the periodic prediction problem
-
Bittanti, S., Colaneri, P., and Nicolao, G. D., 1988, The difference periodic Riccati equation for the periodic prediction problem. IEEE Transactions on Automatic Control, 33, 706-712.
-
(1988)
IEEE Transactions on Automatic Control
, vol.33
, pp. 706-712
-
-
Bittanti, S.1
Colaneri, P.2
Nicolao, G.D.3
-
5
-
-
0026987622
-
The periodic Schur decomposition: Algorithms and applications
-
edited by F. T. Luk, 1770
-
Bojanczyk, A. W., Golub, G., and Van Dooren, P., 1992, The periodic Schur decomposition: algorithms and applications. Proceedings of the SPIE Conference, edited by F. T. Luk, 1770, pp. 31-42.
-
(1992)
Proceedings of the SPIE Conference
, pp. 31-42
-
-
Bojanczyk, A.W.1
Golub, G.2
Van Dooren, P.3
-
6
-
-
3342891707
-
-
Technical report, Department of Mathematics, University of Missouri at Kansas City
-
Byers, R., and Rhee, N., 1995, Cyclic Schur and Hessenberg-Schur numerical methods for solving periodic Lyapunov and Sylvester equations. Technical report, Department of Mathematics, University of Missouri at Kansas City.
-
(1995)
Cyclic Schur and Hessenberg-Schur Numerical Methods for Solving Periodic Lyapunov and Sylvester Equations
-
-
Byers, R.1
Rhee, N.2
-
7
-
-
0025522281
-
Sensitivity of the stable discrete-time Lyapunov equation
-
Gahinet, P. M., Laub, A. J., Kenney, C. S., and Hewer, G. A., 1990, Sensitivity of the stable discrete-time Lyapunov equation. IEEE Transactions on Automatic Control, 35, 1209-1217.
-
(1990)
IEEE Transactions on Automatic Control
, vol.35
, pp. 1209-1217
-
-
Gahinet, P.M.1
Laub, A.J.2
Kenney, C.S.3
Hewer, G.A.4
-
8
-
-
0029342173
-
Residual bounds for discrete-time Lyapunov equations
-
Ghavimi, A. R., and Laub, A. J., 1995, Residual bounds for discrete-time Lyapunov equations. IEEE Transactions on Automatic Control, 40, 1244-1249.
-
(1995)
IEEE Transactions on Automatic Control
, vol.40
, pp. 1244-1249
-
-
Ghavimi, A.R.1
Laub, A.J.2
-
9
-
-
84966204836
-
Methods for modifying matrix factorizations
-
Gill, P. E., Golub, G. H., Murray, W., and Saunders, M. A., 1974, Methods for modifying matrix factorizations. Mathematics of Computation, 28, 505-535.
-
(1974)
Mathematics of Computation
, vol.28
, pp. 505-535
-
-
Gill, P.E.1
Golub, G.H.2
Murray, W.3
Saunders, M.A.4
-
10
-
-
0018721357
-
A Hessenberg-Schur method for the problem AX + XB = C
-
Golub, G. H., Nash, S., and Van Loan, C., 1979, A Hessenberg-Schur method for the problem AX + XB = C. IEEE Transactions on Automatic Control, 24, 909-913.
-
(1979)
IEEE Transactions on Automatic Control
, vol.24
, pp. 909-913
-
-
Golub, G.H.1
Nash, S.2
Van Loan, C.3
-
11
-
-
0004236492
-
-
(Baltimore, Maryland, U.S.A.: Johns Hopkins University Press)
-
Golub, G. H., and Van Loan, C. F., 1989, Matrix Computations (Baltimore, Maryland, U.S.A.: Johns Hopkins University Press).
-
(1989)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
-
13
-
-
0000567621
-
Numerical solution of the stable, non-negative definite Lyapunov equation
-
Hammarling, S. J., 1982, Numerical solution of the stable, non-negative definite Lyapunov equation. IMA Journal of Numerical Analysis, 2, 303-323.
-
(1982)
IMA Journal of Numerical Analysis
, vol.2
, pp. 303-323
-
-
Hammarling, S.J.1
-
14
-
-
0028447254
-
Numerical solution of the discrete-time periodic Riccati equation
-
Hench, J. j., and Laub, A. J., 1994, Numerical solution of the discrete-time periodic Riccati equation. IEEE Transactions on Automatic Control, 39, 1197-1210.
-
(1994)
IEEE Transactions on Automatic Control
, vol.39
, pp. 1197-1210
-
-
Hench, J.J.1
Laub, A.J.2
-
15
-
-
0015109409
-
An iterative technique for the computation of the steady state gains for the discrete optimal regulator
-
Hewer, G. A., 1971, An iterative technique for the computation of the steady state gains for the discrete optimal regulator. IEEE Transactions on Automatic Control, 16, 382-383.
-
(1971)
IEEE Transactions on Automatic Control
, vol.16
, pp. 382-383
-
-
Hewer, G.A.1
-
16
-
-
0024143903
-
FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation (Algorithm 674)
-
1996, Accuracy and Stability of Numerical Algorithms (Philadelphia, Pennsylvania, U.S.A.: SIAM)
-
Higham, N. J., 1988, FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation (Algorithm 674). ACM Transactions on Mathematical Software, 14, 381-396; 1996, Accuracy and Stability of Numerical Algorithms (Philadelphia, Pennsylvania, U.S.A.: SIAM).
-
(1988)
ACM Transactions on Mathematical Software
, vol.14
, pp. 381-396
-
-
Higham, N.J.1
-
17
-
-
0017494885
-
An algorithm for solving the matrix equation X = FXF' + S
-
Kitagawa, G., 1977, An algorithm for solving the matrix equation X = FXF' + S. International Journal of Control, 25, 745-753.
-
(1977)
International Journal of Control
, vol.25
, pp. 745-753
-
-
Kitagawa, G.1
-
19
-
-
0027693939
-
Optimal periodic control for spacecraft pointing and attitude determination
-
Pittelkau, M. E., 1993, Optimal periodic control for spacecraft pointing and attitude determination. Journal of Guidance, Control and Dynamics, 16, 1078-1084.
-
(1993)
Journal of Guidance, Control and Dynamics
, vol.16
, pp. 1078-1084
-
-
Pittelkau, M.E.1
-
20
-
-
0042534569
-
-
Regensburg, Germany, edited by U. Helmke, R. Mennicken and J. Saurer, 1994, On finding stabilizing state feedback gains for a discrete-time periodic system. Proceedings of the 1994 American Control Conference, Baltimore, Maryland, U.S.A., pp. 1167-1168
-
Sreedhar, J., and Van Dooren, P., 1993, Periodic Schur form and some matrix equations. Proceedings of the Symposium on the Mathematical Theory of Networks and Systems (MTNS’93), Regensburg, Germany, edited by U. Helmke, R. Mennicken and J. Saurer, Vol. I, pp. 339-362; 1994, On finding stabilizing state feedback gains for a discrete-time periodic system. Proceedings of the 1994 American Control Conference, Baltimore, Maryland, U.S.A., pp. 1167-1168.
-
(1993)
Periodic Schur Form and Some Matrix Equations. Proceedings of the Symposium on the Mathematical Theory of Networks and Systems (MTNS’93)
, vol.1
, pp. 339-362
-
-
Sreedhar, J.1
Van Dooren, P.2
-
21
-
-
0023439931
-
Truncated balanced realization of a stable nonminimal state-space system
-
Tombs, M. S., and Postlet Hoaite, I., 1987, Truncated balanced realization of a stable nonminimal state-space system. International Journal of Control, 46, 1319-1330.
-
(1987)
International Journal of Control
, vol.46
, pp. 1319-1330
-
-
Tombs, M.S.1
Postlet Hoaite, I.2
-
22
-
-
0029746433
-
A computational approach for optimal periodic output feedback control
-
Dearborn, Michigan, U.S.A
-
Varga, A., and Pieters, S., 1996, A computational approach for optimal periodic output feedback control. Proceedings of the Computer-aided Control Systems Design Symposium, Dearborn, Michigan, U.S.A., pp. 176-181.
-
(1996)
Proceedings of the Computer-Aided Control Systems Design Symposium
, pp. 176-181
-
-
Varga, A.1
Pieters, S.2
|