메뉴 건너뛰기




Volumn 63, Issue 4, 1997, Pages 739-747

Unimodal formulation of the analysis and design problems for framed structures

Author keywords

[No Author keywords available]

Indexed keywords

BEAMS AND GIRDERS; BENDING (DEFORMATION); DEFORMATION; ELASTICITY; MATHEMATICAL MODELS; MODAL ANALYSIS; SHEAR DEFORMATION; STRUCTURAL ANALYSIS; STRUCTURAL DESIGN; STRUCTURAL FRAMES; STRUCTURAL LOADS; TRUSSES;

EID: 0031142679     PISSN: 00457949     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0045-7949(96)00064-8     Document Type: Article
Times cited : (22)

References (9)
  • 3
    • 0040907321 scopus 로고
    • Unimodal beam elements
    • M. B. Fuchs, Unimodal beam elements. Int. J. Solids Struct. 27, 533-545 (1991).
    • (1991) Int. J. Solids Struct. , vol.27 , pp. 533-545
    • Fuchs, M.B.1
  • 4
    • 0026489811 scopus 로고
    • The explicit inverse of the stiffness matrix
    • M. B. Fuchs, The explicit inverse of the stiffness matrix. Int. J. Solids Struct. 29, 2101-2113 (1992).
    • (1992) Int. J. Solids Struct. , vol.29 , pp. 2101-2113
    • Fuchs, M.B.1
  • 5
    • 0021158087 scopus 로고
    • Optimal synthesis of framework under multilevel performance constraints
    • D. E. Grierson and T. C. W. Chiu, Optimal synthesis of framework under multilevel performance constraints. Comput. Struct. 18, 889-898 (1984).
    • (1984) Comput. Struct. , vol.18 , pp. 889-898
    • Grierson, D.E.1    Chiu, T.C.W.2
  • 7
    • 0016130007 scopus 로고
    • Inclusion of transverse shear deformation in finite element displacement formulations
    • R. Narayanaswami and H. M. Adelman, Inclusion of transverse shear deformation in finite element displacement formulations, AIAA J. 12, 1613-1614 (1974).
    • (1974) AIAA J. , vol.12 , pp. 1613-1614
    • Narayanaswami, R.1    Adelman, H.M.2
  • 9
    • 0004062749 scopus 로고
    • Addison-Wesley, Redwood City, CA
    • S. Wolfram, Mathematica. Addison-Wesley, Redwood City, CA (1991).
    • (1991) Mathematica
    • Wolfram, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.