메뉴 건너뛰기




Volumn 36, Issue 3, 1997, Pages 619-645

On a theorem of Brown and Adams

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0031138786     PISSN: 00409383     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0040-9383(96)00021-3     Document Type: Article
Times cited : (37)

References (12)
  • 1
    • 0000429325 scopus 로고
    • Catégories dérivées, état 0
    • Springer, Berlin (French)
    • 1. J.-L. Verdier: Catégories dérivées, état 0, SGA 4.5, Lecture Notes in Mathematics 569, Springer, Berlin (1977) pp. 262-308 (French).
    • (1977) SGA 4.5, Lecture Notes in Mathematics , vol.569 , pp. 262-308
    • Verdier, J.-L.1
  • 2
    • 0000737845 scopus 로고
    • Cohomology theories
    • 2. E. H. Brown: Cohomology theories, Ann. Math. 75 (1962), 467-484.
    • (1962) Ann. Math. , vol.75 , pp. 467-484
    • Brown, E.H.1
  • 3
    • 0000444918 scopus 로고
    • A variant of E. H. Brown's representability theorem
    • 3. J. F. Adams: A variant of E. H. Brown's representability theorem, Topology 10 (1971), 185-198.
    • (1971) Topology , vol.10 , pp. 185-198
    • Adams, J.F.1
  • 7
    • 84972914605 scopus 로고
    • Derived categories and universal problems
    • 7. B. Keller: Derived categories and universal problems, Comm. Algebra 19 (1991), 699-747.
    • (1991) Comm. Algebra , vol.19 , pp. 699-747
    • Keller, B.1
  • 8
    • 85088619467 scopus 로고    scopus 로고
    • The Grothendieck duality theorem via Bousfield's techniques and Brown representability
    • to appear
    • 8. A. Neeman: The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. (to appear).
    • J. Amer. Math. Soc.
    • Neeman, A.1
  • 9
    • 84972580919 scopus 로고
    • Purity and algebraic compactness for modules
    • 9. R. B. Wakefield: Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719.
    • (1969) Pacific J. Math. , vol.28 , pp. 699-719
    • Wakefield, R.B.1
  • 11
    • 84972500767 scopus 로고
    • Homological dimension of a quotient field
    • 11. I. Kaplansky: Homological dimension of a quotient field, Nagoya J. Math. 27 (1966), 139-142.
    • (1966) Nagoya J. Math. , vol.27 , pp. 139-142
    • Kaplansky, I.1
  • 12
    • 0000803408 scopus 로고
    • Homological dimension and the continuum hypothesis
    • 12. B. L. Osofsky: Homological dimension and the continuum hypothesis, Trans. Amer. Math. Soc. 132 (1968), 217-230.
    • (1968) Trans. Amer. Math. Soc. , vol.132 , pp. 217-230
    • Osofsky, B.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.