메뉴 건너뛰기




Volumn 209, Issue 1, 1997, Pages 291-298

An abstract result on asymptotically positively homogeneous differential equations

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDARY VALUE PROBLEMS; ESTIMATION; MATHEMATICAL OPERATORS; PROBLEM SOLVING; THEOREM PROVING;

EID: 0031128547     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jmaa.1997.5383     Document Type: Article
Times cited : (5)

References (12)
  • 1
    • 0002387817 scopus 로고
    • Continuation theorems for periodic perturbations of autonomous systems
    • Capietto A., Mawhin J., Zanolin F. Continuation theorems for periodic perturbations of autonomous systems. Trans. Amer. Math. Soc. 329:1992;41-72.
    • (1992) Trans. Amer. Math. Soc. , vol.329 , pp. 41-72
    • Capietto, A.1    Mawhin, J.2    Zanolin, F.3
  • 2
    • 38249010573 scopus 로고
    • A variational approach to nonresonance with respect to the Fučik spectrum
    • Cuesta M., Gossez J.-P. A variational approach to nonresonance with respect to the Fučik spectrum. Nonlinear Anal. 19:1992;487-500.
    • (1992) Nonlinear Anal. , vol.19 , pp. 487-500
    • Cuesta, M.1    Gossez, J.-P.2
  • 5
    • 84966232905 scopus 로고
    • A semi-Fredholm principle for periodically forced systems with homogeneous nonlinearities
    • Lazer A. C., McKenna P. J. A semi-Fredholm principle for periodically forced systems with homogeneous nonlinearities. Proc. Amer. Math. Soc. 106:1989;119-125.
    • (1989) Proc. Amer. Math. Soc. , vol.106 , pp. 119-125
    • Lazer, A.C.1    McKenna, P.J.2
  • 6
    • 38249004025 scopus 로고
    • Time-mappings and multiplicity of solutions for the one-dimensionalp
    • Manásevich R., Zanolin F. Time-mappings and multiplicity of solutions for the one-dimensionalp. Nonlinear Anal. 21:1993;269-291.
    • (1993) Nonlinear Anal. , vol.21 , pp. 269-291
    • Manásevich, R.1    Zanolin, F.2
  • 7
    • 0003295303 scopus 로고
    • Topological degree methods in nonlinear boundary value problems
    • Providence: Amer. Math. Soc.
    • Mawhin J. Topological degree methods in nonlinear boundary value problems. CBMS. 1979;Amer. Math. Soc. Providence.
    • (1979) CBMS
    • Mawhin, J.1
  • 8
    • 0010959327 scopus 로고
    • A simple proof of a semi-Fredholm principle for periodically forced systems with homogeneous nonlinearities
    • Mawhin J. A simple proof of a semi-Fredholm principle for periodically forced systems with homogeneous nonlinearities. Arch. Math. (Brno). 25:1989;235-238.
    • (1989) Arch. Math. (Brno) , vol.25 , pp. 235-238
    • Mawhin, J.1
  • 9
    • 0002113063 scopus 로고
    • Topological degree and boundary value problems for nonlinear differential equations
    • M. Furi, & P. Zecca. Lecture Notes in Math., New York/Berlin: Springer-Verlag
    • Mawhin J. Topological degree and boundary value problems for nonlinear differential equations. Furi M., Zecca P. Topological Methods for Ordinary Differential Equations. Lecture Notes in Math. 1537:1993;74-142 Springer-Verlag, New York/Berlin.
    • (1993) Topological Methods for Ordinary Differential Equations , vol.1537 , pp. 74-142
    • Mawhin, J.1
  • 10
    • 0011051130 scopus 로고
    • On the theory of periodic solutions of systems of ordinary differential equations
    • Muhamadiev E. On the theory of periodic solutions of systems of ordinary differential equations. Soviet Math. Dokl. 11:1970;1236-1239.
    • (1970) Soviet Math. Dokl. , vol.11 , pp. 1236-1239
    • Muhamadiev, E.1
  • 11
    • 0002061737 scopus 로고
    • On existence of 2π-periodic solutions of differential equation ẍ gxpt
    • Wang D. On existence of 2π-periodic solutions of differential equation ẍ gxpt. Chinese Ann. Math. Ser. B. 5:1984;61-72.
    • (1984) Chinese Ann. Math. Ser. B , vol.5 , pp. 61-72
    • Wang, D.1
  • 12
    • 0010959638 scopus 로고    scopus 로고
    • Nonuniform nonresonance at the first eigenvalue of thep
    • M. Zhang, Nonuniform nonresonance at the first eigenvalue of thep, Nonlinear Anal.
    • Nonlinear Anal.
    • Zhang, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.