메뉴 건너뛰기




Volumn 389, Issue 1-2, 1997, Pages 274-277

A comparison between the performance of feed forward neural networks and the supervised growing neural gas algorithm

Author keywords

Crystal barrel; Evolutionary strategies; MLP; SGNG

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); DATA STRUCTURES; FUNCTIONS; MATHEMATICAL TECHNIQUES; PERFORMANCE;

EID: 0031124436     PISSN: 01689002     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0168-9002(97)00085-5     Document Type: Article
Times cited : (9)

References (8)
  • 4
    • 0039142652 scopus 로고
    • Training feedforward neural networks using evolutionary strategies
    • World Scientific
    • R. Berlich, Training Feedforward Neural Networks Using Evolutionary Strategies, New Computing Techniques in Physics Research IV (World Scientific, 1995).
    • (1995) New Computing Techniques in Physics Research , vol.4
    • Berlich, R.1
  • 6
    • 0039377464 scopus 로고    scopus 로고
    • these Proceedings AIHENP'96, Lausanne, Switzerland
    • M. Kunze and J. Steffens, these Proceedings (AIHENP'96, Lausanne, Switzerland, 1996) Nucl. Instr. and Meth. A 389 (1997) 12.
    • (1996) Nucl. Instr. and Meth. A , vol.389 , pp. 12
    • Kunze, M.1    Steffens, J.2
  • 7
    • 0039735036 scopus 로고
    • A feed forward neural network for recognition of fluctuations in e.m. showers
    • World Scientific
    • T. Degener, A feed forward Neural Network for Recognition of Fluctuations in e.m. Showers, New Computing Techniques in Physics Research III (World Scientific, 1993).
    • (1993) New Computing Techniques in Physics Research , vol.3
    • Degener, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.