메뉴 건너뛰기




Volumn 17, Issue 2, 1997, Pages 30-42

Neurofuzzy Model-Based Weld Fusion State Estimation

Author keywords

[No Author keywords available]

Indexed keywords

FEEDBACK CONTROL; FUSION REACTIONS; FUZZY CONTROL; GAS WELDING; MATHEMATICAL MODELS; PROCESS CONTROL; SENSOR DATA FUSION; STATE ESTIMATION; WELDS;

EID: 0031119164     PISSN: 1066033X     EISSN: None     Source Type: Journal    
DOI: 10.1109/37.581293     Document Type: Article
Times cited : (60)

References (30)
  • 1
    • 0016994942 scopus 로고
    • Feedback Control of GTA Welding Using Puddle Width Measurement
    • A.R. Vorman and H. Brandt, “Feedback Control of GTA Welding Using Puddle Width Measurement,” Welding Journal, vol. 55, no. 9, pp. 742-749, 1976.
    • (1976) Welding Journal , vol.55 , Issue.9 , pp. 742-749
    • Vorman, A.R.1    Brandt, H.2
  • 2
    • 0000118256 scopus 로고
    • Monitoring Joint Penetration Using Infrared Sensing Techniques
    • W. Chen and B. A. Chin, “Monitoring Joint Penetration Using Infrared Sensing Techniques,” Welding Journal, vol. 69, no. 4, pp. 181-l85, 1990.
    • (1990) Welding Journal , vol.69 , Issue.4 , pp. 181-l85
    • Chen, W.1    Chin, B.A.2
  • 3
    • 0029354826 scopus 로고
    • Infrared Sensing for On-Line Weld Geometry Monitoring and Control
    • P. Banerjee, et al., “Infrared Sensing for On-Line Weld Geometry Monitoring and Control,” ASME Journal of Engineering for Industry, vol. 117, no. 3, pp. 323-330, 1995.
    • (1995) ASME Journal of Engineering for Industry , vol.117 , Issue.3 , pp. 323-330
    • Banerjee, P.1
  • 4
    • 0021387248 scopus 로고
    • Coaxial Arc Weld Pool Viewing for Process Monitoring and Control
    • R.W. Richardson, et al., “Coaxial Arc Weld Pool Viewing for Process Monitoring and Control,” Welding Journal, vol. 63, no. 3, pp. 43-50, 1984.
    • (1984) Welding Journal , vol.63 , Issue.3 , pp. 43-50
    • Richardson, R.W.1
  • 7
    • 0028495439 scopus 로고
    • Dynamic Modeling and Adaptive Control of the Gas Metal Arc Welding Process
    • J.-B. Song and D.E. Hardt, “Dynamic Modeling and Adaptive Control of the Gas Metal Arc Welding Process,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 116, no. 3, pp. 405-413, 1994.
    • (1994) ASME Journal of Dynamic Systems, Measurement, and Control , vol.116 , Issue.3 , pp. 405-413
    • Song, J.-B.1    Hardt, D.E.2
  • 8
    • 0001453465 scopus 로고
    • Determining Joint Penetration in GTAW with Vision Sensing of Weld-Face Geometry
    • Y.M. Zhang, et al., “Determining Joint Penetration in GTAW with Vision Sensing of Weld-Face Geometry,” Welding Journal, vol. 72, no. 10, pp.463s-469s, 1993
    • (1993) Welding Journal , vol.72 , Issue.10 , pp. 463s-469s
    • Zhang, Y.M.1
  • 9
    • 0030083605 scopus 로고    scopus 로고
    • Dynamic Analysis and Identification of Gas Tungsten Arc Welding Process for Full Penetration Control
    • Y.M. Zhang, R. Kovacevic, and L. Wu, “Dynamic Analysis and Identification of Gas Tungsten Arc Welding Process for Full Penetration Control,” ASME Journal of Engineering for Industry, vol. 118, no. 1, pp. 123-136,1996.
    • (1996) ASME Journal of Engineering for Industry , vol.118 , Issue.1 , pp. 123-136
    • Zhang, Y.M.1    Kovacevic, R.2    Wu, L.3
  • 11
    • 0029305012 scopus 로고
    • Sensing and Control of Weld Pool Geometry for Automated GTA Welding
    • R. Kovacevic, Y.M. Zhang, and R. Ruan, “Sensing and Control of Weld Pool Geometry for Automated GTA Welding,” ASME Journal of Engineering for Industry, vol. 117, no. 2, pp. 210-222, 1995.
    • (1995) ASME Journal of Engineering for Industry , vol.117 , Issue.2 , pp. 210-222
    • Kovacevic, R.1    Zhang, Y.M.2    Ruan, R.3
  • 12
    • 0026219498 scopus 로고
    • Real-Time Imaging for Process Control
    • T. Hoffman, “Real-Time Imaging for Process Control,” Advanced Material & Processes, vol. 140, no. 3, pp. 37-43, 1991.
    • (1991) Advanced Material & Processes , vol.140 , Issue.3 , pp. 37-43
    • Hoffman, T.1
  • 14
    • 0029273384 scopus 로고
    • Neuro-Fuzzy Logic Modeling and Control
    • J.S.R. Jang and C.T. Sun, “Neuro-Fuzzy Logic Modeling and Control,” Proceedings of the IEEE, vol. 83, no. 3, pp. 378-406, 1995.
    • (1995) Proceedings of the IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 15
    • 0016451032 scopus 로고
    • An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller
    • E.H. Mamdani and S. Assilian, “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller,” International Journal of Machine Studies, vol. 7, no. 1, pp. 1-13, 1975.
    • (1975) International Journal of Machine Studies , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 16
    • 0029309552 scopus 로고
    • Automated Monitoring of Manufacturing Processes, Part 1: Monitoring Methods
    • R. Dn, M.A. Elbestawi, and S.M. Wu, “Automated Monitoring of Manufacturing Processes, Part 1: Monitoring Methods,” ASME Joumal of Engineering for Industry, vol. 117, no. 2, pp. 121-132, 1995.
    • (1995) ASME Joumal of Engineering for Industry , vol.117 , Issue.2 , pp. 121-132
    • Dn, R.1    Elbestawi, M.A.2    Wu, S.M.3
  • 17
    • 0028425921 scopus 로고
    • Tool Wear Monitoring in Diamond Tuming by Fuzzy Pattern Recognition
    • T.J. Ko and D.W. Cho, “Tool Wear Monitoring in Diamond Tuming by Fuzzy Pattern Recognition,” ASME Journal of Engineering for Industry, vol. 116, no. 2, pp. 225-232, 1994.
    • (1994) ASME Journal of Engineering for Industry , vol.116 , Issue.2 , pp. 225-232
    • Ko, T.J.1    Cho, D.W.2
  • 18
    • 0027590189 scopus 로고
    • Knowledge-Based Expert System for Ballscrew Grinding
    • S.B. Billatos and J.A. Webster, “Knowledge-Based Expert System for Ballscrew Grinding,” ASME Journal of Engineering for Industry, vol. 115, no. 2, pp. 239-235, 1993.
    • (1993) ASME Journal of Engineering for Industry , vol.115 , Issue.2 , pp. 235-239
    • Billatos, S.B.1    Webster, J.A.2
  • 19
    • 0029319312 scopus 로고
    • Expert System-Supported Fuzzy Diagnosis Finish-Tuming Process States
    • X.D. Fang, “Expert System-Supported Fuzzy Diagnosis Finish-Tuming Process States,” International Journal of Machine Tools and Manufacture, vol. 35, no. 66, pp. 913-924, 1995.
    • (1995) International Journal of Machine Tools and Manufacture , vol.35 , Issue.66 , pp. 913-924
    • Fang, X.D.1
  • 21
    • 0029358133 scopus 로고
    • Modeling and Control of Carbon Monoxide Concentration Using a Neuro-Fuzzy Technique
    • K. Tanaka, M. Sano, and H. Watanabe, “Modeling and Control of Carbon Monoxide Concentration Using a Neuro-Fuzzy Technique,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 271-219, 1995.
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , Issue.3 , pp. 219-271
    • Tanaka, K.1    Sano, M.2    Watanabe, H.3
  • 22
    • 0029264319 scopus 로고
    • Neuro fuzzy transmission control for automobile with variable loads
    • K. Hayashi, et al., “Neuro fuzzy transmission control for automobile with variable loads,” IEEE Transactions on Control Systems Technology, vol. 3, no. 1, pp. 49-53, 1995.
    • (1995) IEEE Transactions on Control Systems Technology , vol.3 , Issue.1 , pp. 49-53
    • Hayashi, K.1
  • 23
    • 0028444320 scopus 로고
    • Neuro-Fuzzy Hybrid Power System Stahilizer
    • A.M. Sharaf, and T.T. Lie, “Neuro-Fuzzy Hybrid Power System Stahilizer,” Electric Power Systems Research, vol. 30, no. 1, pp. 17-23, 1994.
    • (1994) Electric Power Systems Research , vol.30 , Issue.1 , pp. 17-23
    • Sharaf, A.M.1    Lie, T.T.2
  • 24
    • 0028730568 scopus 로고
    • Neuro-Fuzzy System for Tool Condition Monitoring in Metal Cutting
    • ASME International Mechanical Engineering Congress, ASME, 1994.
    • O.S. Mesina and R. Langari, “Neuro-Fuzzy System for Tool Condition Monitoring in Metal Cutting,” in Dynamic Systems and Control, Vol. 2, pp. 931-938, 1994 ASME International Mechanical Engineering Congress, ASME,1994.
    • (1994) Dynamic Systems and Control , vol.2 , pp. 931-938
    • Mesina, O.S.1    Langari, R.2
  • 25
    • 0021892282 scopus 로고
    • Fuzzy Identification of Systems and Its Applications to Modeling and Control
    • T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.
    • (1985) IEEE Transactions on Systems, Man, and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 26
    • 0023602770 scopus 로고
    • Optimal Algorithms for Adaptive Networks: Second Order Back Propagation, Second Order Direct Propagation, and Second Order {H}ebbian learning
    • D.B. Parker, “Optimal Algorithms for Adaptive Networks: Second Order Back Propagation, Second Order Direct Propagation, and Second Order {H}ebbian learning,” Proceedings of IEEE International Conference on Neural Networks, pp. 593-600, 1987.
    • (1987) Proceedings of IEEE International Conference on Neural Networks , pp. 593-600
    • Parker, D.B.1
  • 27
    • 0004960184 scopus 로고
    • Neuralware, Inc., Pittsburgh, PA
    • Using Neuralworks, Neuralware, Inc., Pittsburgh, PA, 1993.
    • (1993) Using Neuralworks
  • 30
    • 0004348475 scopus 로고
    • Weld Penetration Sensitivity to Welding Variables When Near Full Joint Penetration
    • P. Burgardt and C.R. Heiple, “Weld Penetration Sensitivity to Welding Variables When Near Full Joint Penetration,” Welding Journal, vol. 71, no. 9, pp. 341s-347s, 1992.
    • (1992) Welding Journal , vol.71 , Issue.9 , pp. 341s-347s
    • Burgardt, P.1    Heiple, C.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.