메뉴 건너뛰기




Volumn 32, Issue 2, 1997, Pages 393-409

An application of the Ince algebraization to the stability of non-linear normal vibration modes

Author keywords

Bifurcation; Ince algebraization; Normal vibration mode; Stability

Indexed keywords

ALGEBRA; BIFURCATION (MATHEMATICS); EIGENVALUES AND EIGENFUNCTIONS; MATHEMATICAL MODELS; NONLINEAR EQUATIONS; STABILITY;

EID: 0031104408     PISSN: 00207462     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0020-7462(96)00047-9     Document Type: Article
Times cited : (41)

References (27)
  • 1
    • 0001213074 scopus 로고
    • The normal modes of nonlinear n-degree-of freedom systems
    • R. M. Rosenberg, The normal modes of nonlinear n-degree-of freedom systems. J. Appl. Mech. 30, 7 (1962).
    • (1962) J. Appl. Mech. , vol.30 , pp. 7
    • Rosenberg, R.M.1
  • 2
    • 33645049419 scopus 로고
    • Nonlinear vibrations of systems with many degrees of freedom
    • R. M. Rosenberg, Nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 156 (1966).
    • (1966) Adv. Appl. Mech. , vol.9 , pp. 156
    • Rosenberg, R.M.1
  • 4
    • 0026938396 scopus 로고
    • Non-simiLar normal oscillations in a strongly non-linear discrete system
    • A. F. Vakakis, Non-simiLar normal oscillations in a strongly non-linear discrete system. J. Sound Vibr. 158, 341 (1992).
    • (1992) J. Sound Vibr. , vol.158 , pp. 341
    • Vakakis, A.F.1
  • 5
    • 0038845467 scopus 로고
    • On the geometristion of normal vibrations of nonlinear systems having many degree of freedom
    • Kiev, Academy of Sciences, Kiev
    • R. M. Rosenberg and C. S. Hsu, On the geometristion of normal vibrations of nonlinear systems having many degree of freedom. In Proc. Int. Symp. Theory of Non-Linear Vibrations. Kiev, 1961. Academy of Sciences, Kiev, Vol. 1, pp. 380-416 (1963).
    • (1961) Proc. Int. Symp. Theory of Non-linear Vibrations , vol.1 , pp. 380-416
    • Rosenberg, R.M.1    Hsu, C.S.2
  • 6
    • 0042472697 scopus 로고
    • The stability of the normal modes of nonlinear systems with polynomial restoring forces of high degree
    • C. P. Atkinson, S. J. Bhatt and T. Pacitti, The stability of the normal modes of nonlinear systems with polynomial restoring forces of high degree. J. Appl. Mech. 31, 193 (1963).
    • (1963) J. Appl. Mech. , vol.31 , pp. 193
    • Atkinson, C.P.1    Bhatt, S.J.2    Pacitti, T.3
  • 7
    • 0007097754 scopus 로고
    • The stability of bifurcating periodic solutions in a two-degree-of-freedom nonlinear system
    • L. A. Month and R. Rand, The stability of bifurcating periodic solutions in a two-degree-of-freedom nonlinear system. J. Appl. Mech. 44, 782 (1977).
    • (1977) J. Appl. Mech. , vol.44 , pp. 782
    • Month, L.A.1    Rand, R.2
  • 8
    • 0019065472 scopus 로고
    • An application of the Poincaré map to the stability of nonlinear normal modes
    • L. A. Month and R. Rand, An application of the Poincaré map to the stability of nonlinear normal modes. J. Appl. Mech. 47, 645 (1980).
    • (1980) J. Appl. Mech. , vol.47 , pp. 645
    • Month, L.A.1    Rand, R.2
  • 9
    • 0024620019 scopus 로고
    • On the stability behavior of bifurcated normal modes in coupled nonlinear systems
    • C. H. Pac, On the stability behavior of bifurcated normal modes in coupled nonlinear systems. J. Appl. Mech. 56, 155 (1989).
    • (1989) J. Appl. Mech. , vol.56 , pp. 155
    • Pac, C.H.1
  • 10
    • 0015614251 scopus 로고
    • The geometrical stability of nonlinear normal modes in two degree of freedom systems
    • R. Rand, The geometrical stability of nonlinear normal modes in two degree of freedom systems. Int. J. Non-Linear Mech. 8, 161 (1973).
    • (1973) Int. J. Non-linear Mech. , vol.8 , pp. 161
    • Rand, R.1
  • 11
    • 0041972099 scopus 로고
    • Normal modes, incoupling, and stability for a class of nonlinear oscillators
    • G. Pecelli and E. S. Thomas, Normal modes, incoupling, and stability for a class of nonlinear oscillators. Quart. of Appl. Math. 37, 281 (1979).
    • (1979) Quart. of Appl. Math. , vol.37 , pp. 281
    • Pecelli, G.1    Thomas, E.S.2
  • 12
    • 0042973671 scopus 로고
    • Stability of modes for a class of non-linear planar oscillators
    • G. Pecelli and E. S. Thomas, Stability of modes for a class of non-linear planar oscillators. Int. J. Non-Linear Mech. 15, 57 (1980).
    • (1980) Int. J. Non-linear Mech. , vol.15 , pp. 57
    • Pecelli, G.1    Thomas, E.S.2
  • 13
    • 0026925073 scopus 로고
    • Normal modes and global dynamics of a two-degree-of-freedom non-linear system - 1. Low energies; - II. High energies
    • A. F. Vakakis and R. Rand, Normal modes and global dynamics of a two-degree-of-freedom non-linear system - 1. Low energies; - II. High energies. Int. J. Non-Linear Mech. 27, 861, 875 (1992).
    • (1992) Int. J. Non-linear Mech. , vol.27 , pp. 861
    • Vakakis, A.F.1    Rand, R.2
  • 19
    • 0005008249 scopus 로고
    • On a restricted class of coupled Hill's equations and some application
    • C. S. Hsu, On a restricted class of coupled Hill's equations and some application. Trans. ASME Ser. E. J. Appl. Mech. 28, 551 (1961).
    • (1961) Trans. ASME Ser. E. J. Appl. Mech. , vol.28 , pp. 551
    • Hsu, C.S.1
  • 21
    • 0008257987 scopus 로고
    • Stability and branching of the normal modes of vibrations of the nonlinear systems
    • A. L. Zhupiev and Yu. V. Mikhlin, Stability and branching of the normal modes of vibrations of the nonlinear systems. PMM USSR 45, 450 (1981).
    • (1981) PMM USSR , vol.45 , pp. 450
    • Zhupiev, A.L.1    Mikhlin, Yu.V.2
  • 24
    • 0021695676 scopus 로고
    • Conditions for finiteness of the number of instability zones in the problem of normal vibrations of non-linear systems
    • A. L. Zhupiev and Yu. V. Mikhlin, Conditions for finiteness of the number of instability zones in the problem of normal vibrations of non-linear systems. PMM USSR 48, 486 (1984).
    • (1984) PMM USSR , vol.48 , pp. 486
    • Zhupiev, A.L.1    Mikhlin, Yu.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.