메뉴 건너뛰기




Volumn 28, Issue 5, 1997, Pages 947-963

Weak solutions to a one-dimensional hydrodynamic model of two carrier types for semiconductors

Author keywords

Compensated compactness; Hydrodynamic model for semiconductors; Hyperbolic systems; Viscosity method

Indexed keywords

BOUNDARY CONDITIONS; DAMPING; ELECTRONS; ESTIMATION; GREEN'S FUNCTION; HYDRODYNAMICS; INTEGRAL EQUATIONS; INTEGRATION; PROBABILITY DENSITY FUNCTION; RELAXATION PROCESSES; SEMICONDUCTOR DEVICES; VISCOSITY;

EID: 0031103820     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/0362-546X(95)00189-3     Document Type: Article
Times cited : (21)

References (24)
  • 1
    • 0014705867 scopus 로고
    • Transport equations for electrons in two-valley semiconductors
    • BLOTEKJAER K., Transport equations for electrons in two-valley semiconductors, IEEE Trans. Elec. Dev. 17, 38-47 (1970).
    • (1970) IEEE Trans. Elec. Dev. , vol.17 , pp. 38-47
    • Blotekjaer, K.1
  • 3
    • 0022776857 scopus 로고
    • Multi-dimensional discritization scheme for the hydrodynamic model of semiconductor devices
    • RUDAN M. & ODEH F., Multi-dimensional discritization scheme for the hydrodynamic model of semiconductor devices, COMPEL 5, 149-183 (1986).
    • (1986) COMPEL , vol.5 , pp. 149-183
    • Rudan, M.1    Odeh, F.2
  • 4
    • 0026107291 scopus 로고
    • Solution of hydrodynamic device model using high-order nonoscillatory shock capturing algorithms
    • FATEMI E., JEROME J. & OSHER S., Solution of hydrodynamic device model using high-order nonoscillatory shock capturing algorithms, IEEE Trans. CAD 10, 232-244 (1991).
    • (1991) IEEE Trans. CAD , vol.10 , pp. 232-244
    • Fatemi, E.1    Jerome, J.2    Osher, S.3
  • 5
    • 0024665830 scopus 로고
    • Numerical methods for the hydrodynamic device model: Subsonic flow
    • GARDNER C. L., JEROME J. W. & ROSE D. J., Numerical methods for the hydrodynamic device model: subsonic flow, IEEE Trans. CAD 8, 501-507 (1989).
    • (1989) IEEE Trans. CAD , vol.8 , pp. 501-507
    • Gardner, C.L.1    Jerome, J.W.2    Rose, D.J.3
  • 6
    • 0002209968 scopus 로고
    • On a one-dimensional steady-state hydrodynamic model for semiconductors
    • DEGOND P. & MARKOWICH P. A., On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett. 3(3), 25-29 (1990).
    • (1990) Appl. Math. Lett. , vol.3 , Issue.3 , pp. 25-29
    • Degond, P.1    Markowich, P.A.2
  • 7
    • 80053227201 scopus 로고
    • Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors
    • GAMBA I. M., Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Communs partial diff. Eqns 17, 553-577 (1992).
    • (1992) Communs Partial Diff. Eqns , vol.17 , pp. 553-577
    • Gamba, I.M.1
  • 8
    • 21344492574 scopus 로고
    • Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices
    • ZHANG B., Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices, Communs math. Phys. 157, 1-22 (1993).
    • (1993) Communs Math. Phys. , vol.157 , pp. 1-22
    • Zhang, B.1
  • 9
    • 0001388949 scopus 로고
    • Global weak solutions of the one-dimensional hydrodynamic model for semiconductors
    • JOCHMANN F., Global weak solutions of the one-dimensional hydrodynamic model for semiconductors, Math. Mod. Meth. Appl. Sci. 6, 759-788 (1993).
    • (1993) Math. Mod. Meth. Appl. Sci. , vol.6 , pp. 759-788
    • Jochmann, F.1
  • 10
    • 84971109210 scopus 로고
    • Weak solutions to a hydrodynamic model for semiconductors: The Cauchy problem
    • MARCATI P. & NATALINI R., Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem Proc. R. Soc. Edinb. 125A, 115-131 (1995).
    • (1995) Proc. R. Soc. Edinb. , vol.125 A , pp. 115-131
    • Marcati, P.1    Natalini, R.2
  • 12
    • 0000440966 scopus 로고
    • Compensated compactness and applications to partial differential equations
    • Pitman, London
    • TARTAR L., Compensated compactness and applications to partial differential equations, in Heriot Watt Symp., Vol. IV. Pitman, London (1979).
    • (1979) Heriot Watt Symp. , vol.4
    • Tartar, L.1
  • 13
    • 0020499710 scopus 로고
    • Convergence of approximate solutions to conservation laws
    • DIPERNA R. J., Convergence of approximate solutions to conservation laws, Archs ration. Mech. Analysis 82, 27-70 (1983).
    • (1983) Archs Ration. Mech. Analysis , vol.82 , pp. 27-70
    • Diperna, R.J.1
  • 14
    • 0002578353 scopus 로고
    • Convergence of the viscosity method for isentropic gas dynamics
    • DIPERNA R. J., Convergence of the viscosity method for isentropic gas dynamics, Communs math. Phys. 91, 1-30 (1983).
    • (1983) Communs Math. Phys. , vol.91 , pp. 1-30
    • Diperna, R.J.1
  • 15
    • 0002337397 scopus 로고
    • Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for isentropic gas dynamics
    • DING X., CHEN G.-Q. & LUO P., Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for isentropic gas dynamics, Communs math. Phys. 121, 63-84 (1989).
    • (1989) Communs Math. Phys. , vol.121 , pp. 63-84
    • Ding, X.1    Chen, G.-Q.2    Luo, P.3
  • 16
    • 0001929964 scopus 로고
    • Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III)
    • CHEN G.-Q., Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III), Acta Math. Sci. 6, 75-120 (1986).
    • (1986) Acta Math. Sci. , vol.6 , pp. 75-120
    • Chen, G.-Q.1
  • 20
    • 0000805398 scopus 로고
    • Positive invariant regions for systems of nonlinear diffusion equations
    • CHUEH K., CONLEY C. & SMOLLER J., Positive invariant regions for systems of nonlinear diffusion equations, Indiana Univ. math. J. 26, 373-392 (1979).
    • (1979) Indiana Univ. Math. J. , vol.26 , pp. 373-392
    • Chueh, K.1    Conley, C.2    Smoller, J.3
  • 24
    • 3042556526 scopus 로고    scopus 로고
    • Global solutions of the time-dependent drift-diffusion semiconductor equations
    • to appear
    • FANG W. & ITO K., Global solutions of the time-dependent drift-diffusion semiconductor equations, J. diff. Eqns (to appear).
    • J. Diff. Eqns
    • Fang, W.1    Ito, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.